Размеры звезд. Плотность их вещества. - ABCD42.RU

Размеры звезд. Плотность их вещества.

Размеры звезд. Плотность их вещества.

§ 23. Массы и размеры звезд

Среди звезд, которые видны на небе рядом, различают оптические двойные и физические двойные звезды. В первом случае такие две звезды хотя и видны вблизи, но находятся в пространстве далеко друг от друга. Если же в результате наблюдений выясняется, что они образуют единую систему и обращаются вокруг общего центра масс под действием взаимного тяготения, то их называют физическими двойными звездами.

Первым, кто доказал, что такие звезды действительно существуют, был известный английский астроном Вильям Гершель (1738—1822). Множество двойных звезд открыл и исследовал В. Я. Струве. В настоящее время известно уже более 70 тыс. этих объектов. Когда число звезд в системе, связанной взаимным тяготением, оказывается более двух, то их называют кратными. В настоящее время считается, что большинство звезд (более 70%) образуют системы большей или меньшей кратности. В зависимости от того, каким способом можно обнаружить двойственность звезды, их называют по-разному. Если она заметна при непосредственных наблюдениях в телескоп, то визуально-двойной. Если же об этом можно судить только по спектру, то спектрально-двойной.

Редким примером двойной звезды, оба компонента которой различимы даже невооруженным глазом, являются Мицар и Алькор в созвездии Большой Медведицы. Среди ярчайших звезд также были обнаружены двойные: Сириус, Капелла, Кастор и др. Более того, оказалось, что во многих случаях каждая из звезд такой пары сама состоит из нескольких звезд. Так, Мицар и Капелла имеют в своем составе четыре компонента, а Кастор — шесть. Выяснилось, что α Центавра является тройной звездой, одна из которых расположена ближе всего к нам и получила название Проксима (в переводе с греческого — «ближайшая»).

У двойных звезд, каждый компонент которых можно наблюдать в отдельности, периоды обращения вокруг общего центра масс обычно бывают от нескольких лет до нескольких десятков лет (в редких случаях превышают 100 лет). Их орбиты сравнимы по размерам с орбитами планет-гигантов. Большинство спектрально-двойных звезд имеют периоды обращения порядка нескольких суток, располагаясь друг от друга на расстоянии 5—7 млн км. Самый короткий из известных периодов составляет всего 2,6 ч.

Несмотря на многочисленность двойных звезд, достаточно надежно определены орбиты лишь примерно для сотни из них. При известном расстоянии до этих систем использование третьего закона Кеплера позволяет определить их массу. Сравнивая движение спутника звезды с движением Земли вокруг Солнца, можно написать:

где m 1 и т2 — массы компонентов звездной пары; M 1 и М2 — массы Солнца и Земли; Т1 — период обращения звезд; Т2— период обращения Земли; А — большая полуось орбиты двойной звезды; а — большая полуось земной орбиты. Приняв период обращения Земли и величину большой полуоси ее орбиты равными 1, и пренебрегая массой Земли по сравнению с массой Солнца, получим, что в массах Солнца:

Чтобы определить массу каждой звезды, надо изучить движение каждой из них и вычислить их расстояния А1 и А2 (А = А1 + А2) от общего центра масс. Тогда мы получим второе уравнение:

Решая систему двух уравнений,можно вычислить массу каждой звезды.

У спектрально-двойных звезд наблюдается смещение (или раздвоение) линий в спектре, которое происходит вследствие эффекта Доплера. Оно меняется с периодом, равным периоду обращения пары. Если яркости и спектры звезд, составляющих пару, сходны, то в спектре наблюдается периодическое раздвоение линий (рис. 5.16, а). Пусть компоненты А и В занимают положения А2 или В2, когда один движется по направлению к наблюдателю, а другой — от него. Спектральные линии приближающейся звезды сместятся к фиолетовому концу спектра, а удаляющейся — к красному. Линии в спектре будут раздвоены. В положениях А1 и В1 оба компонента движутся перпендикулярно к лучу зрения, и раздвоения линий не наблюдается. Если одна из звезд настолько слаба, что ее линии не видны, то будет наблюдаться периодическое смещение линий более яркой звезды (рис. 5.16, б).

Для наблюдателя,который находится в плоскости орбиты спектрально-двойной звезды, ее компоненты будут поочередно загораживать, «затмевать» друг друга. Такие звезды называют затменно-двойными или алголями — по названию наиболее известной звезды этого типа β Персея. Ее арабское название «эль гуль» (дьявол) постепенно превратилось в Алголь. Возможно, что еще древние арабы заметили странное поведение этой звезды: в течение 2 суток 11 часов ее яркость остается постоянной, но затем за 5 часов она ослабевает от 2,3 до 3,5 звездной величины, а за следующие 5 часов ее прежняя яркость восстанавливается (рис. 5.17).

В настоящее времяизвестно более 5 тыс. затменно-двойных звезд. Их изучение позволяет определить не только характеристики орбиты, но также получить некоторые сведения о самих звездах. Продолжительность затмения дает возможность судить о размерах звезды. Рекордсменом здесь является ε Возничего, в системе которой при периоде 27 лет затмение продолжается 2 года. Когда во время затмения свет одной звезды проходит через атмосферу другой, можно детально исследовать строение и состав этой атмосферы. Форма кривой блеска некоторых звезд свидетельствует о том, что их форма существенно отличается от сферической (рис. 5.18). Близкое расположение компонентов приводит к тому, что газы из атмосферы одной звезды перетекают на другую. Иногда эти процессы принимают катастрофический характер, и наблюдается вспышка Новой звезды.

Определение массзвезд на основе исследований двойных звезд показало, что они заключены в пределах от 0,03 до 60 масс Солнца. При этом большинство из них имеют массу от 0,3 до 3 масс Солнца. Очень большие массы встречаются крайне редко.

В последние годы тщательные спектральные наблюдения более 100 близких звезд типа Солнца и холоднее его позволили обнаружить в спектрах некоторых звезд незначительные смещения линий, по-видимому, связанные с обращением вокруг них тел планетного типа, масса которых порядка массы Юпитера и даже меньше. Возможно, что дальнейшие поиски приведут к открытию других планетных систем, сходных с Солнечной системой или непохожих на нее.

23.2 Размеры звезд. Плотность их вещества

К сожалению, звезды расположены так далеко от нас, что за редким исключением они даже в самые мощные телескопы видны как точки. Лишь в последние годы для некоторых самых крупных из них удалось получить изображение в виде диска, на котором обнаруживаются пятна (рис. 5.19).

В большинстве случаев размеры звезд приходится рассчитывать на основе данных об их светимости и температуре. Светимость звезды рассчитывается по той же формуле, что и светимость Солнца:

Отношениесветимостей звезды и Солнца будет равно:

Приняв, что = 1 и = 1, получаем выражение для вычисления радиуса звезды (в радиусах Солнца)

Результаты этих вычислений достаточно хорошо согласуются с данными непосредственных измерений с помощью интерферометра размеров наиболее крупных звезд, расстояния до которых невелики.

Звезды самой большой светимости (сверхгиганты) действительно оказались очень большими. Красные сверхгиганты Антарес и Бетельгейзе в сотни раз больше Солнца по диаметру (рис. 5.20). Зато диаметр красных карликов, относящихся к главной последовательности, в несколько раз меньше солнечного. Самыми маленькими звездами являются белые карлики, диаметр которых несколько тысяч километров (рис. 5.21).

Расчеты средней плотности звезд различных типов, проведенные на основе имеющихся данных об их массе и размерах, показывают, что она может значительно отличаться от средней плотности Солнца. Так, средняя плотность некоторых сверхгигантов составляет всего 10 -3 кг/м 3 , что в 1000 раз меньше плотности воздуха при нормальных условиях. Другой крайностью является плотность белых карликов — около 10 9 кг/м 3 .

23.3 Модели звезд

В зависимости от массы и размеров звезды различаются по внутреннему строению, хотя все имеют примерно одинаковый химический состав (95—98% их массы составляют водород и гелий).

Звезды главной последовательности, температура которых такая же, как у Солнца, или ниже, похожи на него по внутреннему строению. У более горячих звезд главной последовательности внешняя конвективная зона отсутствует. В этих звездах конвекция происходит в ядре протяженностью до 1/4 их радиуса, окруженном лучистой оболочкой (рис. 5.22).

Гиганты и сверхгиганты имеют очень маленькое ядро (его радиус около 0,001 доли радиуса звезды). Термоядерные реакции происходят в окружающем его тонком слое; далее на протяжении около 0,1 радиуса звезды происходит передача энергии излучением. Практически весь остальной объем (9/10 радиуса) составляет протяженная конвективная зона. Белые карлики состоят из вырожденного газа, давление которого определяется лишь его плотностью и не зависит от температуры. Равновесие такой «экзотической» звезды, масса которой равна солнечной, наступает лишь тогда, когда она сожмется до размеров, примерно равных размерам Земли. Внутри белого карлика температура достигает 10 млн К и практически не меняется; только в тонкой оболочке из «обычного» вещества она резко падает до 10 000 К.

Понять, как связаны между собой различные типы звезд, как они возникают и как происходит их эволюция, оказалось возможным только на основе изучения всей совокупности звезд, образующих огромные звездные системы — галактики.

1. Чем объясняется изменение яркости некоторых двойных звезд?
2. Во сколько раз отличаются размеры и плотности звезд сверхгигантов и карликов?
3. Каковы размеры самых маленьких звезд?

1. Определите сумму масс двойной звезды Капелла, если большая полуось ее орбиты раина 0,85 а. е., а период обращения 0,285 года.
2. Во сколько раз светимость Ригеля больше светимости Солнца, если его параллакс равен 0,003», а видимая звездная величина 0,34?
3. Какова средняя плотность красного сверхгиганта, если его диаметр в 300 раз больше солнечного, а масса в 30 раз больше массы Солнца?

Размеры звезд. Плотность их вещества.

Звезды видны на ночном небе как точечные светящиеся объекты. Основными характеристиками звезд являются масса, химический состав вещества звезды и её возраст. Массы звезд находятся в интервале от 0.08 до 100 масс Солнца.
Звезда − это горячий газовый шар, разогреваемый за счет ядерной энергии и удерживаемый силами гравитации. Основную информацию о звездах дает испускаемый ими свет и электромагнитное излучение в других областях спектра. Светимость звезды − полная энергия, испускаемая звездой в единицу времени. Светимость звезды может быть вычислена по энергии, достигающей Земли, если известно расстояние до звезды. Звезды должны изменяться со временем, так как они излучают энергию в окружающее пространство. Во Вселенной постоянно рождаются новые и умирают старые звезды. Информация о звездной эволюции может быть получена из диаграммы Герцшпрунга-Рассела, представляющей собой зависимость светимости звезды от температуры её поверхности (рис. 22). Звезды излучает энергию, вырабатываемую в её глубинных слоях. По мере движения к периферии звезды длина волны излучения увеличивается. Время достижения фотоном из центра звезды её поверхности может исчисляться десятками и сотнями тысяч лет.


Pис. 22. Диаграмма Герцшпрунга-Рассела. Линия показывает начальные положения звезд с различными массами на главной последовательности.

На диаграмме Герцшпрунга-Рассела звезды распределены неравномерно. Около 90% звезд сконцентрировано в узкой полосе, пересекающей диаграмму по диагонали. Эту полосу называют главной последовательностью. Её верхний конец расположен в области ярких голубых звезд. Различие в заселенности звезд, находящихся на главной последовательности и областей, примыкающих к главной последовательности, составляет несколько порядков величины. Причина в том, что на главной последовательности находятся звезды на стадии горения водорода, которая составляет основную часть времени жизни звезды. Солнце находится на главной последовательности. Его положение указано на рис. 22.
Следующие по населенности области после главной последовательности − белые карлики, красные гиганты и красные сверхгиганты. Красные гиганты и сверхгиганты − это в основном звезды на стадии горения гелия и более тяжелых ядер.
В левой нижней части диаграммы (рис. 22) − вторая по численности группа звезд − белые карлики. В правом верхнем углу диаграммы группируются звезды с высокой светимостью, но низкой температурой поверхности − красные гиганты и сверхгиганты. Этот тип звезд встречается реже. Названия “гиганты” и “карлики” связаны с размерами звезд. Белые карлики не подчиняются зависимости масса-светимость, характерной для звезд главной последовательности. При одной и той же массе они имеют значительно меньшую светимость, чем звезды главной последовательности.
Звезда находится на главной последовательности на определенном этапе эволюции и становится гигантом или белым карликом на другом. Большинство звезд находится на главной последовательности потому, что это наиболее длительная по времени фаза эволюции звезды.
В таблице 12 приведены основные характеристики Солнца. Пределы изменения таких характеристик звезд как масса (M), светимость (L), радиус (R) и температура поверхности (T) даны в таблице 13.

Читайте также  Творчество М. Ю. Лермонтова

Основные характеристики Солнца

Солнечный ветер − непрерывный поток плазмы солнечной короны в межпланетное пространство. Солнечный ветер в основном составляют протоны и электроны и немного ядер 4 He. За год в результате солнечного ветра Солнце теряет 2·10 -14 своей массы.


Рис. 23. Солнечный ветер.

Пределы изменения характеристик различных звезд


Рис. 24. Соотношение масса-светимость

Для звезд главной последовательности зависимость масса-светимость показана на рис. 24 и имеет вид L

M n , где n = 1.6 для звезд малой массы (M ≤ M) и n = 5.4 для звезд большой массы (M ≥ M). Это означает, что перемещение вдоль главной последовательности от звезд меньшей массы к звездам большей массы приводит к увеличению их светимости.
Измеряя длину волны в максимуме излучения черного тела, можно определить его температуру. Черное тело с температурой 3 К имеет максимум спектрального распределения на частоте 3·10 11 Гц. Черное тело с температурой 6000 К излучает зеленый свет. Температуре 10 6 К соответствует излучение в рентгеновском диапазоне. В таблице 14 приведены интервалы длин волн, соответствующие различным цветам, наблюдаемым в оптическом диапазоне.

Масса, плотность и светимость звёзд

Как ни разнообразны звезды по своим физическим характеристикам, все же и для них есть границы возможного. Не всякая звезда, какую способна создать человеческая фантазия, могла бы реально существовать. Звездами могут быть космические тела, обладающие только такой массой, которая заключена в определенных пределах.

Если масса небесного тела не превышает 0,02 массы Солнца, оно не может стать самосветящимся. При большей массе тела давление и температура в недрах достигают такой величины, при которой ядерная энергия начинает выделяться из вещества почти с такой же легкостью, как пар из кипящей воды. Отсюда можно сделать вывод, что звезд с массой, равной, например, массе Земли или даже массе Юпитера, существовать не может. Из таких рассуждений и устанавливается нижний предел для возможных масс звезд.

Выше были упомянуты «характеристики» звезд. Основные характеристики звезды — масса, радиус (не считая внешних прозрачных слоев), светимость (полное количество излучаемой энергии); эти величины часто выражаются в долях массы, радиуса и светимости Солнца. Кроме основных параметров, употребляются их производные: эффективная температура; спектральный класс, характеризующий степень ионизации и возбуждения атомов в атмосфере звезды; абсолютная звёздная величина (т. е. звёздная величина, которую имела бы звезда на стандартном расстоянии 10 парсек). Рассмотрим некоторые из них более подробно.

Масса звёзд

В сущности, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы изолированной, то есть не входящей в состав кратных систем, звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. «Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз.

В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее «сестра», входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью. На основе закона Всемирного тяготения и законов Кеплера, обобщенных Ньютоном, была выведена формула

a3
М1 + М2 = ——
3P2

где М1 и М2 — массы главной звезды и ее спутника, Р — период обращения спутника, а — большая полуось земной орбиты». Самые «легкие» из звезд, по-видимому, можно встретить среди так называемых невидимых спутников звезд.
В настоящее время насчитывается несколько десятков звезд, полет которых в пространстве совершается по слегка извилистой, волнообразной кривой. Объяснить столь сложный характер движения можно только тем, что рядом со звездой движется невидимый спутник (или спутники), притяжение которого отклоняет звезду от прямолинейного пути.

Точнее говоря, наблюдаемая нами волнообразная траектория полета звезды есть результат сложения двух движений, в которых она одновременно участвует, — движения вокруг центра Галактики и обращения вместе со своим невидимым спутником вокруг общего центра масс.

Звезда 61 Лебедя — двойная. Иначе говоря, она представляет собой систему из двух солнц, оранжевого и красного цвета, из которых вторая, красная звезда по блеску вдвое уступает первой. Движение в пространстве обеих звезд явно указывает на существование в этой системе еще третьего компонента. Определением его массы и орбиты занимались несколько астрономов, в том числе пулковский астроном А.Н.Дейч. Оказалось, что невидимый спутник в системе 61 Лебедя обращается вокруг одной из звезд по весьма вытянутой эллиптической орбите с периодом около 5 лет на среднем расстоянии, в 3 раза превышающем расстояние от Земли до Солнца.

Считать это невидимое небесное тело планетой нельзя. Его масса составляет 0,024 массы Солнца, т. е. она больше той минимальной массы, при которой тело неизбежно становится звездой. Поэтому можно быть уверенным в том, что система 61 Лебедя состоит из трех звезд, причем третий, невидимый ее компонент есть одна из наименее массивных звезд. Природа ограничивает звезды и со стороны очень больших масс. Чтобы понять, чем вызвано это ограничение, попробуем представить себе обстановку в недрах какой-нибудь звезды.

Всякая обычная звезда — это чрезвычайно раскаленный газовый шар. В каждой точке звезды действуют три силы. Во-первых, сила тяжести, влекущая частицу звезды к ее центру. Во-вторых, давление газа, который, стремясь расшириться, выталкивает ту же частицу в обратном направлении, к поверхности звезды. И, наконец, в-третьих, давление света, пробивающееся из недр звезды наружу и потому присоединяющее свои усилия к давлению газа. В каждой точке звезды борьба трех сил оканчивается, в сущности, ничем. Все они уравновешиваются, и поэтому звезда представляет собой устойчивое образование. Решительное преобладание какой-либо из трех сил над остальными оказалось бы для звезды катастрофическим. Если бы, например, давление света или газа внезапно резко возросло, распираемая изнутри звезда «развалилась бы» на части.

Перестань звезда излучать свет или потеряй внезапно газ свою упругость, звезда сильно сжалась бы, перейдя в иное, «незвездное» состояние. На самом деле в наблюдаемых нами звездах господствуют устойчивость и равновесие. Но так может быть не всегда. С возрастанием массы звезды увеличивается ее светимость, т.е. количество света, излучаемое недрами звезды. При очень большой массе, например в тысячи раз превышающей массу Солнца, равновесие трех сил непременно нарушится. Световое давление станет настолько мощным, что оно изнутри подорвет устойчивость звезды.

Среди известных звезд самой массивной считается звезда Пласкетта, она двойная, причем период обращения в этой системе близок к 14 суткам. Определить массу звезды можно, если известно отношение ускорения одного компонента системы по отношению к другому, который предполагается неподвижным. В системе звезды Пласкетта оба компонента примepно одинаково массивны, и в этом своем качестве они превосходят Солнце в 50 — 60 раз. Вопрос о существовании «сверхзвезд», то есть звездообразных объектов, масса которых может превосходить солнечную в миллионы и даже миллиарды раз, пока остается открытым.

Плотность звёзд

Так как размеры звезд различаются значительно больше, чем их массы, то и средние плотности звезд сильно отличаются друг от друга. У гигантов и сверхгигантов плотность очень мала. Например, плотность Бетельгейзе около 10-3 кг/м3. Вместе с тем существуют чрезвычайно плотные звезды. К ним относятся небольшие по размерам белые карлики (их цвет обусловлен высокой температурой). Например, плотность белого карлика Сириус В более 4х107 кг/м3. В настоящее время известны значительно более плотные белые карлики (1010- 1011 кг/м3). Огромные плотности белых карликов объясняются особыми свойствами вещества этих звезд, которое представляет собой атомные ядра и оторванные от них электроны. Расстояния между атомными ядрами в веществе белых карликов должны быть в десятки и даже сотни раз меньше, чем в обычных твердых и жидких телах, с которыми мы встречаемся в земных условиях. Агрегатное состояние, в котором находится это вещество, нельзя назвать ни жидким, ни твердым, так как атомы белых карликов разрушены. Мало похоже это вещество на газ или плазму. И все-таки его принято считать «газом», учитывая, что расстояние между частицами даже в плотных белых карликах во много раз больше, чем сами ядра атомов или электроны.

Светимость звёзд

Одни звезды кажутся нам более яркими, другие более слабыми. Но это еще не говорит об истинной мощности излучения звезд, так как они находятся на разных расстояниях. Таким образом, видимая звездная величина сама по себе не может быть характеристикой звезды, поскольку зависит от расстояния. Истинной характеристикой служит светимость, то есть полная энергия, которую излучает звезда в единицу времени. Светимости звезд крайне разнообразны. У одной из звезд-гигантов — S Золотой Рыбы — светимость в 500000 раз больше солнечной, а светимость самых слабых звезд-карликов примерно во столько же раз меньше.

Светимость звезды, как уже говорилось, тесно связана с ее массой. Чем больше вещества заключено в звезде, тем более ярко она светит. Отсюда становится понятно, почему третий компонент системы 61 Лебедя остается пока невидимым. Эта звезда содержит так мало вещества, что ее весьма слабое излучение не может быть обнаружено с помощью современных телескопов.

«Характеристикой светимости является так называемая абсолютная величина звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой — от расстояния до нее. Если отнести какую-либо звезду на условное стандартное расстояние 10пс, то ее величина будет называться «абсолютной». Поясним это примером.

Если видимая (относительная) звездная величина Солнца (определяемая потоком излучения от него) равна -26.8, то на расстоянии 10пс (которое приблизительно в 2 млн. раз больше истинного расстояния от Земли до Солнца) его звездная величина будет около +5. На таком расстоянии наше дневное светило казалось бы звездочкой, едва видимой невооруженным глазом (напомним, что самые слабые звезды, видимые невооруженным глазом, имеют величину +6). Звезды высокой светимости имеют отрицательные абсолютные величины, например -7, -5. Звезды низкой светимости характеризуются большими положительными значениями абсолютных величин, например +10, +12 и т.д.

Если известна абсолютная звездная величина, то можно вычислить светимость любой звезды по формуле: lg L = 0,4(M-Mс), где: L — светимость звезды, M — ее абсолютная звездная величина, а Mс- абсолютная звездная величина Солнца».

Размеры звёзд. Плотность их вещества

Рис. 5.19. Пятна на диске Бетельгейзе

К сожалению, звёзды расположены так далеко от нас, что за редким исключением они даже в самые мощные телескопы видны как точки. Лишь в последние годы для некоторых самых крупных из них удалось получить изображение в виде диска, на котором обнаруживаются пятна (рис. 5.19).

В большинстве случаев размеры звёзд приходится рассчитывать на основе данных об их светимости и температуре. Светимость звезды рассчитывается по той же формуле, что и светимость Солнца:

Читайте также  Критика культуры и цивилизации в творчестве Ж.Ж. Руссо

L = 4πR 2 σT 4 .

Отношение светимостей звезды и Солнца будет равно:

= .

Приняв, что R = 1 и L = 1, получаем выражение для вычисления радиуса звезды (в радиусах Солнца):

R = .

Результаты этих вычислений достаточно хорошо согласуются с данными непосредственных измерений с помощью интерферометра размеров наиболее крупных звёзд, расстояния до которых невелики.

Рис. 5.20. Солнце в сравнении с гигантами и сверхгигантами

Рис. 5.21. Размеры звёзд-карликов

Звёзды самой большой светимости (сверхгиганты) действительно оказались очень большими. Красные сверхгиганты Антарес и Бетельгейзе в сотни раз больше Солнца по диаметру (рис. 5.20). Зато диаметр красных карликов, относящихся к главной последовательности, в несколько раз меньше солнечного. Самыми маленькими звёздами являются белые карлики, диаметр которых составляет несколько тысяч километров (рис. 5.21).

Расчёты средней плотности звёзд различных типов, проведённые на основе имеющихся данных об их массе и размерах, показывают, что она может значительно отличаться от средней плотности Солнца. Так, средняя плотность некоторых сверхгигантов составляет всего 10 –3 кг/м 3 , что в 1000 раз меньше плотности воздуха при нормальных условиях. Другой крайностью является плотность белых карликов — около 10 9 кг/м 3 .

Модели звёзд

В зависимости от массы и размеров звёзды различаются по внутреннему строению, хотя все имеют примерно одинаковый химический состав (95—98% их массы составляют водород и гелий).

Звёзды главной последовательности, температура которых такая же, как у Солнца, или ниже, похожи на него по внутреннему строению. Среди множества звёзд этого типа есть и такие, которые по многим своим характеристикам являются «двойниками» Солнца. Наиболее яркой из них является β Гончих Псов. У более горячих звёзд главной последовательности внешняя конвективная зона отсутствует. В этих звёздах конвекция происходит в ядре протяжённостью до 1 /4 их радиуса, окружённом лучистой оболочкой (рис. 5.22).

Рис. 5.22. Внутреннее строение звёзд различных классов

Гиганты и сверхгиганты имеют очень маленькое ядро (его радиус около 0,001 доли радиуса звезды). Термоядерные реакции происходят в окружающем его тонком слое; далее на протяжении около 0,1 радиуса звезды происходит передача энергии излучением. Практически весь остальной объём ( 9 /10 радиуса) составляет протяжённая конвективная зона. Белые карлики состоят из вырожденного газа, давление которого определяется лишь его плотностью и не зависит от температуры. Равновесие такой «экзотической» звезды, масса которой равна солнечной, наступает лишь тогда, когда она сожмётся до размеров, примерно равных размерам Земли. Внутри белого карлика температура достигает 10 млн К и практически не меняется; только в тонкой оболочке из «обычного» вещества она резко падает до 10 000 К.

В 1996 г. были открыты космические тела, которые являются промежуточным звеном между звёздами и планетами. Они получили название «коричневые карлики», поскольку излучают слабо и только в инфракрасном диапазоне. Именно это излучение было обнаружено приборами, установленными на борту искусственных спутников. Коричневые карлики обладают слишком малой массой, что не обеспечивает температуры, необходимой для протекания термоядерной реакции превращения водорода в гелий. Гравитационное сжатие их массы достаточно лишь для того, чтобы достигнутая температура обеспечила в течение короткого (по космическим меркам) времени превращение дейтерия (тяжёлого изотопа водорода) в гелий. Масса коричневых карликов составляет всего лишь 0,01—0,07 массы Солнца. Про них можно сказать, что они ещё не звёзды, но уже не планеты.

Понять, как связаны между собой различные типы звёзд, как они возникают и как происходит их эволюция, оказалось возможным только на основе изучения всей совокупности звёзд, образующих огромные звёздные системы — галактики.

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

1. Период обращения двойной звезды 100 лет. Большая полуось видимой орбиты a = 2,0ʺ, а параллакс p = 0,05ʺ. Определите сумму масс и массы звёзд в отдельности, если они отстоят от центра масс на расстояниях, относящихся как 1 : 4.

Дано:

T = 100 лет

=

Решение:

Так как A1 : A2 = m2 : m1, то = и m1 = 4m2.

По третьему закону Кеплера

m1 + m2 = A 3 : T 2 или 4m2 + m2 = A 3 : T 2 ,

т. е. 5m2 = A 3 : T 2 .

A = ,

A = = 40 а. е.;

m2 = = 1,28; m1 = 4•1,28 = 5,12.

Ответ: m1 = 5,12 массы Солнца, m2 = 1,28 массы Солнца.

2. Во сколько раз Арктур больше Солнца, если светимость Арктура равна 100, а температура 4500 К?

Дано:

Решение:

= = 10 • = 18.

— ?

Ответ: радиус Арктура больше радиуса Солнца в 18 раз.

ВОПРОСЫ 1. Чем объясняется изменение яркости некоторых двойных звёзд? 2. Во сколько раз отличаются размеры и плотности звёзд-сверхгигантов и карликов? 3. Каковы размеры самых маленьких звёзд?

УПРАЖНЕНИЕ 19 1. Определите сумму масс двойной звезды Капелла, если большая полуось её орбиты равна 0,85 а. е., а период обращения 0,285 года. 2. Во сколько раз светимость Ригеля больше светимости Солнца, если его параллакс равен 0,003ʺ, а видимая звёздная величина 0,34? 3. Какова средняя плотность красного сверхгиганта, если его диаметр в 300 раз больше солнечного, а масса в 30 раз больше массы Солнца?

§ 24.ПЕРЕМЕННЫЕ И НЕСТАЦИОНАРНЫЕ ЗВЁЗДЫ

Наряду с исследованиями двойных звёзд важную роль в развитии представлений о физической природе звёзд сыграли исследования переменных звёзд. В отличие от затменных переменных, речь идёт о физических переменных звёздах, у которых светимость меняется в результате различных процессов, происходящих на самой звезде. В настоящее время известно несколько десятков тысяч переменных звёзд различных типов. Светимость некоторых меняется строго периодически, у других периодичность часто нарушается или не соблюдается так строго, а есть и такие, у которых светимость меняется неправильным образом, и пока не удалось найти определённых закономерностей в этих изменениях.

Размеры звезд. Плотность их вещества.

Звезды можно назвать самыми главными телами во Вселенной: ведь в них заключено более 90% всего наблюдаемого нами вещества.

Каждая звезда — это массивный газовый шар, излучающий собственный свет, в отличие от планет, которые светят отраженным солнечным светом. По своей природе звезды родственны Солнцу, ближайшей к Земле звезде.

Все звезды очень далеки от нас, и расстояние до каждой из них, кроме Солнца, во много раз превышает расстояние от Земли до любой из планет Солнечной системы. Прямой способ определения расстояний до сравнительно близких звезд основан на измерении их наблюдаемого смещения на фоне более далеких звезд, вызванного движением Земли вокруг Солнца.

Если расстояние до звезд составляет сотни и более парсек, их параллактическое смещение становится незаметным. Тогда для определения расстояний до звезд используют другие, косвенные методы, требующие анализа звездных спектров.

Самая близкая к Солнечной системе звезда — Проксима Центавра — находится от нас на расстоянии примерно 1,3 пс. Большинство звезд, хорошо заметных невооруженным глазом, удалено на десятки и сотни световых лет.

Звезды различаются по массе, размерам, плотностям, светимостям и химическому составу.

Рассмотрим эти характеристики подробнее.

Для определения масс звезд изучают движения звезд, входящих в пары и группы. В этих парах и группах звезды притягивают друг друга, двигаясь вокруг общего центра масс (двойные звезды). Массы звезд в таком случае определяются на основании закона всемирного тяготения. Чаще всего масса звезды измеряется в единицах массы Солнца, которая составляет примерно 2•10 30 кг. Массы почти всех звезд находятся в пределах от 0,1 до 50 масс Солнца.

Размеры звезд определяют как прямыми методами, с помощью оптических интерферометров, так и путем теоретических расчетов. Оказалось, что размеры большинства наблюдаемых звезд составляют сотни тысяч и миллионы километров. Диаметр Солнца, например, равен 1392000 км. Но встречаются и очень маленькие звезды – белые карлики и совсем крошечные нейтронные звезды диаметром 10–20 км. Звезды с размерами во много раз больше, чем у Солнца, являются гигантами (Бетельгейзе, Арктур, Антарес). Но особенно велики очень редко встречающиеся звезды — красные сверхгиганты. Если бы некоторые из таких звезд оказались на месте Солнца, орбита Марса, а то и Юпитера очутились бы внутри них!

Сравнительные размеры звёзд

Таким образом, по размерам звезды отличаются друг от друга значительно больше, чем по массе. По этой причине чем меньше звезда, тем, как правило, выше плотность ее вещества, и наоборот. Вещество звезд-гигантов и сверхгигантов может иметь плотность меньшую, чем воздух в нормальных, земных условиях. Средняя плотность солнечного вещества в 1,4 раза больше плотности воды. Значительно плотнее Солнца белые карлики. 1 см 3 вещества звезды Сириус В имеет массу более 50 кг, а некоторые белые карлики еще в десятки раз плотнее. Но рекорд по плотности держат нейтронные звезды — их плотность такая же, как у атомных ядер, — 10 14 г/см 3 . Такая плотность вещества может получиться, если весь земной шар сжать до размера в полкилометра!

Еще больше, чем по размерам, различаются звезды по светимости. Так называют мощность оптического излучения, т. е. количество световой энергии, ежесекундно выделяемое звездой. Чаще всего светимость выражают в единицах светимости Солнца. Эта величина равна 3,8•10 26 Вт. Для большинства наблюдаемых звезд она находится в пределах от нескольких тысячных долей до миллиона светимостей Солнца.

Химический состав звезд определяют, изучая их спектр. Оказалось, что вещество звезд содержит те же элементы, которые встречаются и на Земле. Почти во всех звездах более 98% массы приходится на два самых легких элемента — водород и гелий, причем водорода примерно в 2,7 раза больше по массе, чем гелия. На долю всех остальных элементов приходится около 2% массы вещества.

Звезды непрозрачны. Поэтому мы можем непосредственно определять химический состав только их поверхностных слоев, от которых к нам приходит свет. Однако теоретические расчеты позволяют предсказать содержание различных элементов и в недрах звезд.

По физическим свойствам вещества все известные звезды можно разделить на три категории: нормальные звезды, белые карлики и нейтронные звезды.

К нормальным звездам относятся большинство наблюдаемых звезд, в том числе все те, которые можно увидеть невооруженным глазом или в небольшой телескоп. Они состоят из обычного по своим свойствам, так называемого идеального газа. Его давление прямо пропорционально температуре и обратно пропорционально объему, который газ занимает. Используя физические законы, которым подчиняется газ, астрономы рассчитывают плотность, давление и температуру в недрах звезд, что очень важно для понимания строения звезд и их развития.

В звездах с очень большой плотностью вещество уже не подчиняется законам идеального газа. Газ приобретает иные свойства и называется вырожденным. Из вырожденного газа состоят белые карлики, а также ядра некоторых звезд-гигантов.

Вещество нейтронных звезд обладает чудовищной плотностью, при которой не могут существовать даже атомные ядра. Оно состоит в основном из электрически нейтральных элементарных частиц — нейтронов. Нейтроны в обычном состоянии входят, наряду с протонами, в состав атомных ядер.

Вещество любой звезды находится под действием силы гравитации, стремящейся сжать звезду. Однако звезды не сжимаются (по крайней мере, быстро), потому что гравитации препятствует сила давления звездного вещества. В нормальных звездах это давление обусловлено упругими свойствами горячего идеального газа. В белых карликах сжатию препятствует давление вырожденного газа. Оно почти не зависит от того, горячий газ или холодный. В нейтронных звездах гравитацию сдерживают ядерные силы, действующие между отдельными нейтронами.

Температура и тепловое давление газа в звездах поддерживаются внутренними источниками энергии. Если они иссякнут (а рано или поздно в каждой звезде это происходит), силы тяготения сожмут звезду в маленький плотный шар. В нормальных звездах энергия постоянно вырабатывается в центральной области, где плотность и температура газа достигают максимальных значений. Там происходят термоядерные реакции между протонами (ядрами атомов водорода), в результате которых самый легкий газ — водород превращается в более тяжелый гелий. При этом выделяется та энергия, которая позволяет звездам долго сохранять свою высокую температуру, но запасы водорода в звездах постепенно убывают. В Солнце, например, каждую секунду количество водорода уменьшается примерно на 600 млн т, и почти на столько же больше становится гелия. За секунду выделяется энергия, равная примерно 3,8•10 26 Дж, которую уносят электромагнитные волны. Несколько процентов этой энергии получают всепроникающие элементарные частицы — нейтрино, возникающие при ядерных реакциях. Они легко пронизывают звезду насквозь и улетают со скоростью света в межзвездное пространство.

Читайте также  Система министерского исполнительного делопроизводства XIX начала XX вв.

В некоторых звездах — красных гигантах температура в центральной области настолько высока, что там начинает происходить реакция между ядрами гелия, в результате которой возникает более тяжелый элемент — углерод. Эта реакция также сопровождается выделением энергии.

По современным научным представлениям большая часть элементов тяжелее гелия, существующих в природе, образовалась при термоядерных реакциях в недрах звезд или в реакциях, протекающих при взрывах сверхновых звезд.

Когда звезда очень молода и в ней еще не начались ядерные реакции, источником ее энергии может служить сжатие звездного вещества, т. е. его уплотнение под действием собственной гравитации. При этом потенциальная энергия вещества уменьшается и переходит в тепловую.

Как и все тела в природе, звезды не остаются неизменными. Они рождаются, эволюционируют и, наконец, «умирают».

Продолжительность жизни звезды зависит от ее массы. Звезды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного «топлива» и могут светить десятки миллиардов лет. Поэтому звезды небольших масс еще не успели состариться. Зато массивные звезды светят сравнительно недолго. Так, звезды с массой 15 масс Солнца растрачивают запасы своей энергии всего за 10 млн лет. Звезды, такие, как наше Солнце, могут жить примерно в тысячу раз дольше.

Почти всю свою жизнь звезда сохраняет температуру и размер практически постоянными. Но когда в центральной области весь водород оказывается превращенным в гелий, звезда начинает сравнительно быстро изменяться. Она увеличивается в размере, и, хотя температура ее поверхности при этом падает, излучаемая звездой энергия возрастает во много раз. Звезда становится красным гигантом. Температура в центральной области поднимается до 100 млн градусов, и в плотном гелиевом ядре такой звезды «загорается» реакция превращения гелия в углерод.

На определенном этапе развития красного гиганта может произойти «сброс» внешних слоев этой раздувшейся звезды, и тогда звезда будет находиться внутри газового кольца планетарной туманности. Сама звезда после этого сожмется и превратится в медленно остывающий белый карлик.

Такой путь развития ожидает и наше Солнце: через 6–7 млрд лет оно, пройдя стадию красного гиганта, станет белым карликом.

Звезды, у которых масса в 1,4 раза больше, чем у Солнца, не смогут в конце жизни остановить свое сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдет «нейтронизация» вещества: взаимодействие электронов с протонами приведет к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда. Наиболее массивные звезды могут превратиться в нейтронные, после того как они взорвутся как сверхновые. Расчеты показывают, что нейтронные звезды должны быть сильно намагничены. Быстро вращаясь вокруг оси, они могут рождать мощные потоки радиоволн. Открытые в 60-х гг. импульсные источники радиоизлучения — пульсары и являются, по-видимому, такими вращающимися нейтронными звездами, возникшими после взрывов сверхновых.

Если масса звезды (или ее «остатка» после потери вещества) превышает 3–5 масс Солнца, то, начав сжиматься в конце своей активной жизни, она не сможет остановить своего сжатия даже на стадии нейтронной звезды. Конечным результатом такого безудержного гравитационного сжатия должно явиться образование черной дыры.

Размеры и модели звёзд

Урок 29. Астрономия 11 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Размеры и модели звёзд»

Обнаружение физических двойных звёзд, то есть систем близко расположенных в пространстве звёзд, связанных силами тяготения и обращающихся около общего центра масс, позволило оценить их массы, используя третий обобщённый закон Кеплера.

Однако оставался нерешённым вопрос об определении размеров звёзд. Дело в том, что все звёзды расположены так далеко от нас, что за редким исключением даже в самые мощные телескопы они видны как точки. Лишь не так давно для некоторых очень крупных звёзд удалось получить изображения их дисков. На некоторых фотографиях иногда удаётся рассмотреть и пятна.

Для близких звёзд определить их линейный радиус можно по известным угловому радиусу и расстоянию до неё (или её годичному параллаксу):

Но в большинстве случаев линейные радиусы звёзд принято выражать в радиусах Солнца. Если учесть, что 1 а. е. в радиусах Солнца равна 149,6 · 10 6 км : 0,696 · 10 6 км = 215, то получим формулу для определения линейных радиусов звёзд в радиусах Солнца:

Для примера давайте с вами определим размер ε Ориона, если её угловой диаметр равен 0,00072», а годичный параллакс —0,0024».

Мы рассмотрели самый простой способ определения размеров звёзд. Но в большинстве случаев радиусы далёких звёзд приходится рассчитывать на основе данных об их светимости и температуре. Светимость звезды определяется по той же формуле, по которой можно найти светимость нашего Солнца:

Разделим первое уравнение на второе:

Теперь примем, что радиус Солнца и его светимость равны единице, и перепишем предыдущее уравнение с учётом этих условий:

Из полученного соотношения легко выразить линейный радиус звезды в линейных радиусах Солнца:

Давайте для примера рассчитаем радиус одной из самых больших из известных звёзд, если температура её фотосферы составляет порядка 3500 К, а светимость в 270 000 раз больше светимости. Солнца. Для простоты расчётов примем, что температура фотосферы Солнца равна 6000 К.

Чтобы понять, насколько она огромна, представьте, что если её разместить в центре Солнечной системы, то она закроет орбиту Сатурна. Свету, чтобы облететь один раз вокруг звезды, потребовалось бы около 8 часов. А сверхзвуковому самолёту при скорости в 4500 км/ч на это понадобилось бы около 220 лет.

Есть во Вселенной и маленькие звёзды. Так, размеры белых карликов сравнимы с размерами нашей планеты. А радиусы нейтронных звёзд достигают всего нескольких десятков километров. Например, у нейтронной звезды PSR J1614-2230, обнаруженной в 2006 году, радиус составляет всего 13 километров.

Но её масса в 1,97 раза больше массы Солнца. Давайте оценим плотность вещества этой звезды. Для простоты расчётов будем считать, что масса Солнца равна 2 ∙ 10 30 килограммам.

Для сравнения средняя плотность вещества в тяжёлых атомных ядрах составляет около 2,8 ∙ 10 17 кг/м 3 .

Расчёты средней плотности звёзд различных типов, проведённые на основе имеющихся данных об их массе и размерах, показывают, что она может значительно отличаться. Так, например, средняя плотность нашего гипергиганта из предыдущей задачи составляет всего около 10 –5 кг/м 3 , то есть она примерно в 100 000 раз меньше плотности воздуха при нормальных условиях.

В зависимости от массы и размеров звёзды различаются по внутреннему строению, хотя все они имеют примерно одинаковый химический состав.

Итак, взглянем на диаграмму спектр — светимости. Как мы помним, в верхней части главной последовательности располагаются горячие массивные звёзды. Возьмём, к примеру, звезду, масса которой примерно в 10 раз больше массы Солнца, а светимость превышает солнечную в 3000 раз.

Расчёты показывают, что в центре такой звезды располагается конвективное ядро, размером примерно в 0,2 радиуса звезды. Оставшуюся же часть звезды занимает лучистая оболочка, где перенос энергии осуществляется посредством излучения. Такая звезда примерно на 90 % состоит из водорода и на 9 % из гелия. Согласитесь, что такая звезда устроена достаточно просто. А основным источником её энергии является углеродный цикл, в котором происходит превращение водорода в гелий под действием трёх катализаторов: углерода, азота и кислорода.

Посмотрим теперь, что представляют собой звезды, расположенные на нижней части главной последовательности.

Ну, во-первых, у этих звёзд нет конвективного ядра, но есть внешняя конвективная зона. Она начинается на расстоянии примерно в 0,65 полного радиуса звезды и продолжается практически до самой её поверхности. Источником энергии таких звёзд является известный нам протон-протонный цикл.

Переместимся в верхний правый угол диаграммы. Как мы помним, здесь располагаются очень массивные звёзды. Для примера рассмотрим гиганта, радиус которого примерно в 20 раз больше радиуса Солнца. Пусть масса гиганта лишь слегка превышает массу Солнца (1,3М), а его светимость будет больше светимости Солнца в 230 раз.

При расчётах структуры такой звезды выяснилась удивительная вещь: в центре звезды нет водорода, он весь выгорел. Там находится маленькое ядро (0,001R), почти целиком состоящее из гелия. Как следствие, в ядре таких звёзд термоядерные реакции не идут, а его температура остаётся постоянной. Поэтому ядро называется изотермическим. Его окружает тонкий энерговыделяющий слой, в котором происходят термоядерные реакции углеродного цикла. Далее идёт слой, в котором энергия переносится излучением. Его толщина составляет примерно 1/5 радиуса звезды. А далее идут наружные слои гиганта, охваченные бурной конвекцией. Эти слои содержат около 70 % массы всей звезды. Но тогда мы приходим к удивительному выводу: маленькое ядро гиганта весит почти одну третью его часть. А чайная ложка вещества ядра весит почти тонну.

Возникает закономерный вопрос: неужели вещество ядра красного гиганта можно считать газом?

Ответ однозначен: «Да». Но газ этот особенный, и, чтобы объяснить все его свойства, мы должны рассмотреть строение белых карликов. Их светимость очень мала (иногда в тысячу раз меньше светимости Солнца). В то же время их масса сравнима с массой Солнца, а размеры — с размерами планет.

Это приводит к тому, что средняя плотность вещества белых карликов (10 5 —10 9 г/см³), что почти в миллион раз выше плотности звёзд главной последовательности. Но что же это такое? Быть может, вещество белых карликов — это жидкость или твёрдое тело?

Нет. Плотность жидкости или твёрдого тела не может превышать 20 г/см 3 . При такой плотности атомы вещества уже предельно тесно расположены друг к другу. Из этого следует, что внутри белого карлика нет атомов! А вещество представляет собой очень плотный ионизированный газ, состоящий из атомных ядер и отдельных электронов. Такой газ называется вырожденным электронным газом. Его давление определяется только плотностью и не зависит от температуры. Снаружи белый карлик покрыт тонкой оболочкой идеального газа.

На одном из прошлых уроков мы с вами говорили о том, что в 1995 году были открыты коричневые карлики, являющиеся промежуточным звеном между звёздами и планетами. Они обладают слишком малой массой, что не обеспечивает температуры, необходимой для протекания термоядерных реакций в его недрах. Про них говорят, что они ещё не звёзды, но уже и не планеты.

Понять, как связаны между собой различные типы звёзд, как они возникают и как происходит их эволюция, оказалось возможным только на основе изучения всей совокупности звёзд, образующих огромные звёздные системы — галактики. Но о них мы с вами поговорим в одном из следующих уроков.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: