Химическая организация клетки. Органические вещества - ABCD42.RU

Химическая организация клетки. Органические вещества

Химический состав клетки: микро- и макроэлементы

Содержание:

Клетки всех живых организмов имеют сходный химический состав, включающий в себя органические и неорганические вещества. Каждое из таких соединений выполняет в структуре живого определенную функцию, которая связана с их строением.

Химический состав клетки

Большая часть химических элементов, находящихся в Периодической системе Менделеева Д.И., обнаружена внутри живых клеток. Там они находятся не в хаотичном расположении, а образуют органические и неорганические соединения. Хотя соединений неорганического типа внутри «живого» больше, роль органических веществ гораздо значимее!

Областью биологии, занимающейся изучением химического состава клеток, является биохимия. На долю органических веществ выпала функция определения уникальности живого организма на планете.

Макро- и микроэлементы

Все содержащиеся внутри живых клеток элементы объединяют в две большие группы: микроэлементы и макроэлементы.

О микроэлементах

Внутри живых клеток содержится минимальная часть микроэлементов (0,01%), но без этого количества живые организмы не могут полноценно существовать. В категорию микроэлементов относят:

  • фтор (формирует зубную эмаль);
  • йод (синтезирует гормон щитовидной железы);
  • кобальт (составная часть витамина В12);
  • медь (участвует в дыхании);
  • цинк (входит в состав инсулина);
  • магний (входит в состав молекулы хлорофилла у растений);
  • кремний (образование коллагеновых волокон);
  • литий (регулирует процессы размножения).

Условия окружающей среды определяют концентрацию химических элементов внутри живого организма. К примеру, повышенное содержание меди имеется внутри моллюсков, а железа – в позвоночных организмах.

Про макроэлементы

Внутри живого организма содержание макроэлементов составляет около 99%. Наиболее важная роль из них отводится:

  • азоту;
  • углероду;
  • водороду;
  • кислороду.

Это органогенные элементы, так как они образуют главные органические соединения. Остальные (сера, фосфор и прочие) отвечают за происходящие в живом организме процессы.

При избытке либо дефиците в организме микро- и макроэлементов развиваются различные заболевания. Поэтому, периодически следует восполнять концентрацию данных элементов в живом организме, увеличивая или уменьшая их количество в пище.

Неорганические вещества клетки

В категорию неорганических соединений относят минеральные соли и воду.

  1. Минеральные соли.
    • Данные вещества представлены в организмах в нерастворенных либо растворенных формах. Их основной функцией служит поддержание буферных свойств цитоплазмы (постоянство слабощелочной реакции внутри цитоплазмы). Также они ответственны за формирование зубов и костей, участвуют в процессах кроветворения. У растений минеральные соли ответственны за интенсивность процесса фотосинтеза и рост.

  2. Молекулы воды.
    • Благодаря наличию в ее структуре прочных ковалентных связей, вода обладает ярко выраженными свойствами «растворителя».

Органические вещества клетки

К органическим соединениям, находящимся внутри живого относят:

  1. Белки. Данные органические полимеры состоят из аминокислот, образуя в организме первичную, вторичную, третичную и четвертичную структуры строения. Основными их функциями являются: строительная (входят в состав клеточных мембран), защитная (иммунобелки) и транспортная (перенос кислорода гемоглобином).
  2. Жиры. Это липидоподобные соединения, обладающие яркими гидрофобными свойствами. При расщеплении 1 г. жира высвобождается значительное количество энергии(38,9 кДж), идущей на поддержание температуры тела и выполнение движений.
  3. Углеводы. Данные соединения состоят из углерода, кислорода и водорода. Различают следующие группы углеводов: моносахариды (глюкоза, фруктоза, рибоза), дисахариды (сахароза, мальтоза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). При их расщеплении выделяется много энергии, необходимой для протекания процессов жизнедеятельности. Также, они способны накапливаться как запасные питательные вещества в виде крахмала и гликогена.
  4. Нуклеиновые кислоты. Представлены молекулами рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. РНК ответственна за синтез белковых молекул и транспортировку аминокислот. ДНК отвечает за хранение наследственных признаков с их последующей передачей.
  5. Аденозинтрифосфорная кислота. Состоит из: трех остатков фосфорной кислоты, аденина (азотистое основание) и рибозы (пятиосновного сахара). Молекулы аденозинтрифосфорной кислоты АТФ отвечают за идущий в митохондриях синтез энергии и ее хранение.

Взаимосвязь строения и функций неорганических и органических веществ

Выполняемые неорганическими и органическими веществами функции тесно связаны с их строением. Так, покрывающая клетку мембрана (оболочка) содержит в своем составе углеводы, белки и липиды. Находящиеся на поверхности клеточной оболочки белки-рецепторы воспринимают сигналы из окружающего пространства, выполняя тем самым рецепторную функцию.

Содержание липидов (жиров) внутри мембран определяет проницаемость оболочки для одних соединений и непроницаемость для других. Углеводы ответственны за синтез молекул АТФ, запасающих энергию. Аналогично связано строение других компонентов клетки с их составом.

Роль химических веществ в клетке и организме человека

Внутри живых организмов каждое химическое вещество играет определенную роль, благодаря чему весь организм способен полноценно жить. Так, присутствие в клетке магния способствует выработке некоторых ферментов и формированию хлорофилла у растений. Кальций формирует прочность зубов и костей человека, а также активирует работу волокон мышц.

Без серы в организме не смогут образовываться белки, а без ионов натрия и калия в клетку не смогут поступать некоторые соединения.

Функции химических элементов в клетке

Входят в состав воды;

в составе серосодержащих аминокислот, белков.

Химическая организация клеток живых организмов — состав, вещества и функции

  1. Таблица. Основные химические элементы в клетках живых организмов
  2. Значение органических соединений в клетке
  3. Роль воды в клетке

Элементы — это основные единицы материи. Из 92 стабильных элементов, найденных на Земле, только 25 встречаются в организмах живых существах и 16–18 являются жизненно важными. Элементы, которые, как известно, имеют универсальное значение для всех живых организмов, включают водород (H), кислород (O), углерод (C), азот (N), кальций (Ca), фосфор (P), калий (K), серу (S), хлор (Cl), натрий (Na), магний (Mg) и железо (Fe).

Все элементы, которые входят в химический состав организма, в зависимости от их доли содержания в клетке, можно разделить на четыре группы:

Органогены (биоэлементы) – химические элементы, которые входят в состав всех органических соединений и составляют примерно 98% от массы клетки:

  • Водород – компонент воды и органических молекул
  • Углерод – основа органических молекул
  • Азот – компонент белков и нуклеиновых кислот
  • Кислород – необходим для клеточного дыхания

Макроэлементы – элементы, содержащиеся в клетке в значительно меньших количествах – десятые и сотые доли процента:

  • Натрий – важен в функционировании нервов
  • Магний – компонент хлорофилла
  • Фосфор – компонент нуклеиновых кислот, костей и зубов
  • Сера – компонент некоторых белков и витаминов
  • Хлор – главный анион в жидкостях вне клетки
  • Калий – важен в функционировании нервов
  • Кальций – кофактор ферментов, запускающий сокращение мышц и компонент костей, зубов и клеточных стенок растений

Микроэлементы – элементы, составляющие от 0,001% до 0,000001% массы живого организма:

  • Железо – кофактор многих ферментов и составная часть гемоглобина
  • Йод – участвует в обменных процессах

Ультрамикроэлементы – на их долю приходится менее 0,000001% от массы живого организма. К этой группе принадлежат золото, серебро, обладающие бактерицидным воздействием, ртуть, препятствующая обратному всасыванию воды в почечных канальцах, влияя на ферменты.

Химические соединения в клетке также могут быть разделены на две основные группы: органические и неорганические соединения.

Органические соединения являются химическими соединениями, которые содержат углерод. К органическим веществам в клетке относятся углеводы, белки, липиды и нуклеиновые кислоты. Некоторые из этих соединений синтезируются самой клеткой.

Вода — это неорганическое соединение, которое состоит из водорода и кислорода. Это важное вещество, но в клетке также содержится множество других химических элементов, с которыми мы ознакомимся в таблице ниже.

Таблица. Основные химические элементы в клетках живых организмов

Содержание элемента в процентном соотношении Название элемента Значение
65% Кислород Этот элемент, очевидно, является самым важным в клетках живых организмов. Атомы кислорода присутствуют в воде, которая является наиболее распространенным веществом в организме, и других соединениях, составляющих ткани. Он также содержится в крови и легких благодаря дыханию
18.6% Углерод Углерод содержится в каждой органической молекуле в организме, а также в побочных продуктах дыхания (углекислый газ). Обычно он попадает в организм вместе с пищей
9.7% Водород Содержится во всех молекулах воды в организме, а также во многих других соединениях, составляющих различные ткани
3.2% Азот Очень распространен в белках и органических соединениях. Он также присутствует в легких из-за его обилия в атмосфере
1.8% Кальций Является основным компонентом скелетной системы, включая зубы. Он также содержится в нервной системе, мышцах и крови
1.0% Фосфора Этот элемент распространен в костях и зубах, а также в нуклеиновых кислотах
0.4% Калий Калий содержится в мышцах, нервах и некоторых тканях живых организмов
0.2% Натрий Содержится в мышцах и нервах
0.2% Хлор Присутствует в коже и облегчает поглощение воды клетками
0.06% Магний Служит кофактором для различных ферментов в организме
0.04% Сера Присутствует во многих аминокислотах и белках
0.007% Железо Содержится в основном в крови, облегчает транспортировку кислорода
0.0002% Йод Встречается в гормонах в щитовидной железе, участвует в обменных процессах

Значение органических соединений в клетке

  • Служат энергией для клеточных процессов
  • Средство накопления энергии
  • Обеспечивают структурную поддержку клеточным стенкам
  • Хранят большое количество энергии в течение длительного периода времени
  • Действуйте как источник энергии
  • Играют важную роль в структуре клеточных мембран
  • Являются источником метаболической воды
  • Сокращают потери воды при испарении
  • Действуют как строительные блоки многих структурных компонентов клетки; необходимы для роста
  • Образуют ферменты, катализирующие химические реакции
  • Образуют гормоны, которые контролируют рост и обмен веществ
  • Содержат генетическую информацию клеток
  • Играют жизненно важную роль в синтезе белка

Химическая организация клетки

Понятие и внутреннее строение клеток, их классификация и типы, функциональные особенности. Характеристика неорганических веществ: макро, микро- и ультрамикроэлементов. Описание органических веществ: белков, углеводов, липидов и нуклеиновых кислот.

Рубрика Биология и естествознание
Вид доклад
Язык русский
Дата добавления 15.06.2015
Размер файла 18,6 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Химическая организация клетки

1. Клетка

клетка нуклеиновый органический белок

Клетка — это структурная и функциональная единица всего живого на планете. Она представляет собой целостную живую систему. Клетки состоят из неорганических и органических веществ. Каждая клетка содержит много элементов, участвующих в различных химических реакциях. Одних химических элементов в клетке больше, других — меньше. На атомном уровне различий между органическим и неорганическим миром природы нет: тела неживой природы состоят из тех же атомов, что и живые организмы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно отличается. Кроме того, живые организмы могут отличаться по изотопному составу химических элементов. Условно все элементы можно разделить на три группы: макроэлементы, микроэлементы и ультрамикроэлементы.

2. Неорганические вещества.

Составляют только 6% от общего веса человека, но являются незаменимыми для обеспечения гомеостаза. К неорганическим веществам относится вода и соли.

Вода — играет важную роль в физиологических процессах организма. Выполняет функцию универсального растворителя, потому вещества делятся на гидрофильные — те, которые растворяются в воде, и гидрофорные — те, которые растворяются плохо или вообще не растворяются (белки, жиры, полисахариды). Вода участвует во многих метаболических процессах (гидролиз, фотосинтез), обеспечивает условия химических реакций.

Соли — неорганические соединения, необходимые для поддержания кислотно-щелочного баланса клетки, синтеза ДНК, РНК, АТФ. Придают прочность, потому входят в состав костей скелета. Благодаря неравномерному распределению ионов соли внутри клетки образуется возбудимость нервных клеток и сократимость мышечных волокон.

Макроэлементы

К неорганическим макроэлементам относятся Калий, Кальций, Натрий, Хлор.

Кальций — содержится в костях и зубах виде гидроксофосфата кальция, участвует в свертываемости крови, регулирует важные внутриклеточные процессы. Концентрация ионов кальция в плазме крови поддерживается очень точно на уровне 9-11 мг% и редко колеблется больше чем на 0,5 мг%, что обусловлено взаимодействием парагормона и тирокальцитонина. При падении уровня кальция в крови начинается усиленная работа околощитовидных желез, возможна гиперфункция околощитовидных желез, что вызывает уменьшение уровня фосфата разрушение костной ткани.

Натрий и калий — функционируют в паре. Происходит диффузия ионов Натрия и Калия через мембрану. Для нормальной работы клеток необходимо, чтоб сохранялась ионная асимметрия вне клетки и внутри. Ее регулирует натрий — калиевый насос, для работы которого источником энергии является расщепление АТФ, происходящее под влиянием фермента аденозитрифосфотазы.

Хлор — поддерживает электронейтральность клетки.

Микроэлементы

Сюда относятся свыше 22 химических элементов, таких как Ванадий, Германий, Йод, Марганец, Никель, Фтор, Медь, Хром, Цинк, Железо, Селен, Хлор.

Железо — необходимо для выработки эритроцитов, синтеза гемоглобина и ряда ферментов. Концентрация железа регулируется исключительно его поглощением, а не выделением. Около 65% всего железа содержатся в составе гемоглобина и миоглобина, большая часть оставшегося запасается в специальных белках.

Медь — необходима для нормального роста костей, работы кровеносных сосудов, соединительных тканей. Входит в состав окислительных ферментов, участвующих в синтезе цитохромов. Ее дефицит служит одной из причин раковых заболеваний. Избыточное количество также ведет к развитию тяжелых заболеваний.

Цинк — его дефицит ведет к нарушениям работы сенсорного аппарата, ухудшению вкуса и обоняния. Симптомы анорексии и физических отравлений могут быть сняты добавками цинка в пищу. Играет важную роль в заживлении ран. Входит в состав инсулина.

Кремний — необходимый для нормального обмена веществ элемент. Его недостаток ведет к нарушению структуры соединительных тканей. Присутствует в костеобразующих клетках.

Селен — участвует в регуляторных процессах организма. Способен предохранять от отравления ртутью и соединениями кадмия, понижает возможность смерти от рака. Его недостаток ведет к мускульной и сердечной недостаточности.

Мышьяк — необходим для нормального роста человека. Его недостаток приводит к понижению рождаемости и угнетению роста.

Хлор — необходим для поддержания осмотического равновесия. Присутствует в составе желудочного сока.

Фтор — необходим для нормального роста, входит в состав зубной эмали.

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001% в организмах живых существ. К ним относятся золото, серебро, которое оказывает бактерицидное воздействие, ртуть, подавляющая обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще малопонятны.

3. Органические вещества

К органическим соединениям относятся белки, углеводы, липиды и нуклеиновые кислоты.

Белки — одно из четырех органических веществ живой материи, но по своему значению и биологическим функциям они занимают особое место. Наиболее важными белками являются ферменты, которые регулируют все процессы. Белки — единственные азотосодержащие питательные вещества, они состоят из аминокислот. Именно от сочетания аминокислот зависят свойства и качества белков.

Функции белков в организме:

· Структурная: белки — незаменимый строительный материал;

· Сократительная: белки актин и миозин входят в состав мышечного волокна — миофибриллы. Это длинные тонкие нити, состоящие из параллельных еще более тонких нитей, окруженных внутриклеточной жидкостью, в которой растворены аденозинтрифосфорная кислота, гликоген, неорганические соли и другие вещества;

· Транспортная: белок миоглобин берет на себя функцию перенесения кислорода в мышцы, гемоглобин переносит кровь от легких к клеткам;

· Запасная: запасные белки ферритин, овальбумин, казеин, зеин;

· Регуляторная: выполняют белки-гормоны инсулин — снижает уровень сахара в крови, способствует синтезу гликогена, влияет на обмен фосфора т.д., вазопрессин — подавляет мочеобразование и повышает кровяное давление, тиреоглобулин — белки, содержащиеся в щитовидной железе;

· Защитная: белки иммуноглобулины, фибриноген, у животных — +токсины;

· Рецепторная: звуковые, вкусовые, световые и др. рецепторы.

Макроэлементы

К органическим макроэлементам относятся Углерод, Кислород, Водород, Азот, Сера, Фосфор.

Углерод — входит в состав всех органических соединений; скелет из атомов углерода составляет их основу. Кроме того, СО2 фиксируется в процессе фотосинтеза, выделяется в процессе дыхания, СО участвует в регуляции клеточных функций, СаСО3 входит в состав минеральных скелетов.

Кислород — входит в состав практически всех органических веществ клетки. Для аэробных организмов служит окислителем в ходе клеточного дыхания. В наибольших количествах в живых клетках содержится в составе воды.

Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Используется для получения энергии.

Азот — входит в состав белков, нуклеиновых кислот и их мономеров. Из организма выводится в составе аммиака, мочевины или мочевой кислоты как конечный продукт обмена. Участвует в регуляции кровяного давления.

Сера — входит в состав серосодержащих аминокислот, поэтому содержится во многих белках. Присутствует в небольших количествах в цитоплазме клеток и межклеточных жидкостях.

Фосфор — входит в состав АТФ, других нуклеиновых кислот, в состав костной ткани, зубной эмали, а также в цитоплазме и межклеточных жидкостях.

Углеводы

Углеводы — сладкие, на вкус, легко растворимые в воде вещества.

· Моносахариды: рибоза и дезоксирибоза — входят в состав нуклеиновых кислот, глюкоза — источник энергии, фруктоза — фруктовый сахар;

· Дисахариды: объединение в одной молекуле двух моносахаридов, например, сахароза — сахар (глюкоза плюс фруктоза);

· Полисахариды: состоят из простых сахаров: крахмал и гликоген — резерв питательных веществ и энергии, целюлоза и хитин — выполняют структурные и защитные функции.

Липиды — (жиры, воски, жироподобные вещества) это плохо растворимые, плохо проводящие тепло органические вещества. Их основные функции: источник энергии и метаболической воды, защита, обмен веществ и сохранение тепла в организме. Воски, к примеру, защищают от механических повреждений, от воздействия ультрафиолетовых лучей, регулируют водный баланс.

Жироподобные вещества — фосфолипиды; к жироподобным веществам относится холестерин, который образует стероидные гормоны и желчные кислоты.

К липидам относятся витамины А, D, Е, К.

Нуклеиновые кислоты

Нуклеиновые кислоты делятся на ДНК и РНК:

1. Дезоксирибонуклеиновая кислота (ДНК). Функции:

— хранение генетической информации. С помощью генетического кода в белках зашифрована информация о свойствах и признаках организма;

— передача наследственной информации следующему поколению. Происходит благодаря удвоению ДНК. В итоге образуются две одинаковых ДНК — матричная и дочерняя;

— передача генетической информации из ядра в цитоплазму — транскрипция.

2. Рибонуклеиновая кислота (РНК) — это полимер, состоящий из нуклеотидов. Они содержат в себе остаток фосфорной кислоты, рибозу и азотистое основание. РНК — это одноцепочная молекула.

· Транспортная — переносит аминокислоты с месту синтеза белка в рибосому;

· Рибосомная — образует рибосомы, которые обеспечивают синтез белков;

· Информационная — переносит информацию о структуре белка к рибосоме.

Литература

3. Учебное пособие Биология, Курс лекций для всех студентов 1 курса, 2007 г.

Размещено на Allbest.ru

Подобные документы

Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

лекция [44,4 K], добавлен 27.07.2013

Функции обмена веществ в организме: обеспечение органов и систем энергией, вырабатываемой при расщеплении пищевых веществ; превращение молекул пищевых продуктов в строительные блоки; образование нуклеиновых кислот, липидов, углеводов и других компонентов.

реферат [28,0 K], добавлен 20.01.2009

Обмен веществ в организме — взаимосвязанное единое целое. Взаимопереходы между отдельными классами органических соединений — естественное, неизбежное и крупномасштабное явление в живой природе. Взаимосвязь обменов нуклеиновых кислот, углеводов и липидов.

презентация [919,4 K], добавлен 13.10.2013

Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

реферат [13,5 K], добавлен 06.07.2010

Изучение клеточной теории строения организмов, основного способа деления клеток, обмена веществ и преобразования энергии. Анализ признаков живых организмов, автотрофного и гетеротрофного питания. Исследование неорганических и органических веществ клетки.

реферат [39,6 K], добавлен 14.05.2011

Химический состав клетки

Средняя оценка: 4.5

Всего получено оценок: 2784.

Средняя оценка: 4.5

Всего получено оценок: 2784.

Все организмы на нашей планете состоят из клеток, которые схожи между собой химическим составом. В данной статье мы кратко расскажем о химическом составе клетки, роль различных веществ в жизнедеятельности всего организма, узнаем, какая наука изучает данный вопрос.

Группы элементов химического состава клетки

Наука, которая изучает строение живой клетки, называется цитологией. Химический состав клеток и превращения веществ в организме рассматривает наука биохимия.

Все элементы, входящие в химическую структуру организма, можно условно поделить на три группы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

К макроэлементам относятся водород, углерод, кислород и азот. На их долю приходится почти 98% массы всех составных элементов. Эти макроэлементы называются органогенными, так как они образуют молекулы органических веществ (белков, нуклеиновых кислот, жиров, углеводов).

Микроэлементы имеются в количестве от стотысячных до тысячных долей процента. Например, хром, медь, цинк и другие. И совсем малое содержание в клетке ультрамикроэлементов – миллионные доли процента.

которые читают вместе с этой

В переводе с греческого «макрос» – большой, а «микро» – маленький.

Учёные установили, что каких-либо особенных элементов, которые присущи только лишь живым организмам, нет. Поэтому и живая, и неживая природа состоит из одних и тех же элементов. Этим доказывается их общность и взаимосвязь.

Несмотря на количественное содержание, входящие в состав живого элементы играют важную роль. Поддержание постоянного химического состава в организме является важным условием жизни. Ведь у каждого из химических элементов есть своё значение.

Роль некоторых химических элементов клетки

Макроэлементы углерод, водород, кислород и азот являются основой биополимеров, а именно белков и нуклеиновых кислот, первые три из них входят в состав углеводов и липидов. В состав органических веществ входят также фосфор и сера.

Многие элементы входят в состав жизненно важных веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет кислотность среды. Чаще всего она слабощелочная. Ионы натрия и калия участвуют в проведение нервных импульсов.

Гемоглобин содержит железо, хлорофилл – магний, твердость костям и зубам придают нерастворимые соли кальция.

Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является хорошим растворителем, из-за этого все вещества внутри организма делятся на:

  • Гидрофильные– растворяются в воде;
  • Гидрофобные– не растворяются в воде.

Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме, является участником различных реакция (например, фотосинтеза), участвует в регуляции температурного режима.

Рис. 3. Вещества клетки.

Таблица “Свойства химического состава клетки”

Чтобы наглядно понять, какую роль играют химические элементы, входящие в состав клетки, мы внесли их в следующую таблицу:

Элементы

Значение

Кислород, углерод, водород, азот.

Содержатся в органических веществах и воде.

Составной компонент оболочки у растений, в животном организме находится в составе костей и зубов, принимает активное участие в свёртываемости крови.

Содержится в нуклеиновых кислотах, ферментах, клеточных мембранах в составе фосфолипидов, костной ткани и зубной эмали в соединении с кальцием.

Является основой белков, ферментов и витаминов.

Обеспечивает передачу нервных импульсов, активирует синтез белка, процессы фотосинтеза и роста.

Один из компонентов желудочного сока, провокатор ферментов.

Принимает активное участие в обменных процессах, компонент гормона щитовидной железы.

Обеспечивает передачу импульсов в нервной системе, поддерживает постоянное давление внутри клетки, провоцирует синтез гормонов.

Составной элемент хлорофилла, костной ткани и зубов, провоцирует синтез ДНК и процессы теплоотдачи.

Составная часть гемоглобина, хрусталика, роговицы, участвует в синтезе хлорофилла, транспорте кислорода по организму.

2.3 Химический состав клетки. Макро- и микроэлементы


Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

макроэлементы, содержание которых не ниже 0,01%;

микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.

Азот, кислород, водород, углерод. Это основные компоненты клетки.

Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.

Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.

Магний – компонент хлорофилла. Участвует в синтезе белков.

Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

Цинк – компонент инсулина;

Медь – участвует в фотосинтезе и дыхании;

Кобальт – компонент витамина В12;

Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;

Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.

В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.

Неорганические вещества клетки

Вода . От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:

капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:

переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;

формировании нервных импульсов, имеющих электрохимическую природу;

входят в состав белков;

фосфат-ион – компонент нуклеиновых кислот и АТФ;

карбонат-ион – поддерживает Ph в цитоплазме.

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры.

Основные классы, имеющиеся в живых организмах:

Углеводы . В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.

Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.

Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.

Сахароза (дисахарид) – источник энергии, образуется в растениях.

Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.
Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям). Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м. Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон. Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липидную структуру. Жиры входят в основу структуры мембран.


Белки или протеины
являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовывать между собой связи. Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи. В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

первичная структура – аминокислотная цепочка;

вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;

третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;

четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры.

Белки выполняют в клетке множество функций:

ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);

транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;

защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.

структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;

регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;

энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано в 1953 г американцами Д. Уотсоном и Ф. Криком.

Мономерные ее единицы —нуклеотиды, имеющие принципиально общую структуру из:

азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

вместо тиминового нуклеотида – урациловый;

рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: