Химические источники тока - ABCD42.RU

Химические источники тока

Основные химические источники электроэнергии

Химические источники тока — это устройства и приборы которые в процессе химической окислительно-восстановительной реакции выделяют напряжение. Также они называются электрохимическими, гальваническими элементами. Основной принцип действия их основан на взаимодействии химических реагентов которые вступая, в реакцию друг с другом вырабатывают электроэнергию, в виде постоянного тока. Этот процесс происходит без механического или теплового воздействия, что является основными факторами играющими превосходящую роль среди других генераторов постоянного напряжения. Химические источники тока, сокращённо ХИТ, уже давно нашли применение не только в быту, но и на производстве.

Немного истории создания ХИТ

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

Принцип действия

Устройства вырабатывающее электрический ток содержит два электрода, которые помещаются между электролитом. Именно на их границе соприкосновения и появляется небольшой потенциал. Один из них называют катодом, а другой анодом. Все эти элементы вместе образуют электрохимическую систему.
Во время возникновения окислительно-восстановительной реакции между электродами один элемент отдаёт мельчайшие частицы электроны другому. Поэтому она и не может происходить вечно, а со временем просто теряются свойства каждого элемента этой цепи.
Электроды могут быть представлены в виде пластин или решёток из металла. После погружения их в среду с электролитом меду их выводами возникает разность потенциалов, которая именуется напряжением разомкнутой цепи. Даже при удалении хотя бы одного из электродов с электролита процесс генерации напряжения прекращается.

Состав электрохимических систем

В качестве электролита используются следующие химические вещества:

  1. Водные растворы на основе щелочей, кислот, солей и т. д.;
  2. Растворы с ионной проводимостью на неводной основе, которые получены при растворении солей в неорганических или органических растворителях;
  3. Твердые соединения, содержащие ионную решетку, где один из ионов является подвижным;
  4. Матричные электролиты. Это особый вид жидких растворов и расплавов, которые находятся в порах твёрдого непроводящего элемента — электроносителя;
  5. Расплавы солей;
  6. Ионообменные электролиты с униполярной системой проводимости. Твёрдые тела с фиксированной ионогенной группой одного знака.

Классификация гальванических элементов и их подбор

Генераторы электрического тока получающегося во время химической реакции разделяются по:

  • Размерам;
  • Конструктивным особенностям;
  • Способу и реагенту, за счёт которого, и получается электроэнергия.

Все элементы вырабатывающее ток во время химической реакции делятся на:

  1. Заряжаемые, которые в процессе эксплуатации могут неоднократно заряжаться от источника постоянного тока, они называются аккумуляторами;
  2. Не заряжаемые, то есть источники одноразового использования которые после завершения химической реакции просто приходят в негодность и должны быть утилизированы. Попросту это гальванический элемент или батарейка.

Для того чтобы подобрать источник электроэнергии, основанный на химической реакции, нужно понимать его характеристики, к которым относятся:

  • Напряжение между анодом и катодом при разомкнутой цепи. Этот показатель чаще всего зависит от выбранной электрохимической системы, а также концентрации и вылечены всех составляющих;
  • Мощность источника;
  • Показатель силы тока;
  • Емкость;
  • Электротехнические показатели, то есть количество циклов заряда и разряда;
  • Диапазон рабочих температур;
  • Срок хранения между тем временем как элемент был создан и до начала его эксплуатации;
  • Полный срок службы;
  • Прочность, то есть защита корпуса от различных механических повреждений и влияний, а также вибраций;
  • Положение работы, некоторые из них работают только в горизонтальных положениях;
  • Надёжность;
  • Простота в эксплуатации и обслуживании. В идеале отсутствие необходимости малейшего вмешательства в работу в течение всего срока эксплуатации.

При выборе нужной батареи или аккумулятора обязательно нужно учесть его электрические номиналы такие как напряжение и ток, а также ёмкость. Именно она является ключевой для сохранения работоспособности, подключаемого к источнику прибора.

Современные химические источники тока и их применение

Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Сферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда.
В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами.
В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике.
Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.

Способы утилизации химических источников энергии

Проблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов.
Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.

Видео о химических источниках тока

Химические источники тока

Обозначение на схеме и устройство химических источников тока

К химическим источникам тока причисляют гальванические элементы и аккумуляторы. Есть и другие химические источники тока, но они менее распространены. В обиходе гальванический элемент получил название батарейка. Это не совсем верное определение, так как батарейкой можно назвать несколько отдельных гальванических элементов соединённых вместе – это и есть батарея питания или батарейка.

На принципиальных схемах гальванический элемент обозначается так.

Так обозначают один гальванический элемент или один элемент аккумулятора.

Но поскольку номинальное напряжение на одном гальваническом элементе обычно не более 1,5 вольта, их соединяют в батареи питания. Батарея питания на принципиальной схеме обозначается вот так.

Здесь показано, что батарея питания состоит из двух отдельных гальванических элементов. Общее напряжение на полюсах этой составной батареи — 3 вольта из расчёта, что каждый из элементов имеет на полюсах напряжение 1,5 вольта. Также на схемах можно встретить и такое обозначение.

Это тоже условное изображение батареи питания или батарейки на принципиальной схеме, только здесь не уточняется, сколько именно гальванических элементов используется в батарее, а указано лишь общее напряжение на полюсах батареи.

Читайте также  Скорость химических реакций 2

Одиночный аккумуляторный элемент обозначается на схемах так же, как и отдельный гальванический элемент. Номинальное напряжение одного аккумуляторного элемента обычно составляет около 1,25 вольт. Чтобы получить аккумулятор с большим напряжением аккумуляторные элементы соединяют вместе – получается аккумуляторная батарея или просто аккумулятор. Обозначение аккумуляторной батареи на схемах такое же, как и батареи, составленной из гальванических элементов.

Чем гальванический элемент отличается от аккумулятора?

Дело в том, что гальванический элемент сам является источником постоянного тока, который образуется за счёт необратимой химической реакции. Гальванический элемент причисляют к первичным источникам тока.

Аккумулятор является так называемым вторичным источником тока. Почему? Потому, что перед тем, как использовать аккумулятор, его нужно предварительно зарядить от источника постоянного тока — зарядника. Только после полной зарядки аккумулятор сможет питать электронное устройство. Отличительным качеством аккумуляторов является то, что их можно заряжать и разряжать много раз. В отличие от аккумулятора, гальваническая батарея питания после своего полного разряда не может быть использована повторно.

Какие существуют батарейки?

Наибольшее распространение в настоящее время получили щелочные батареи питания. Их ещё называют алкалиновыми – производное от английского слова alkaline – «щелочь».

Работа щелочной батарейки основана на окислительно-восстановительной химической реакции между цинком и диоксидом марганца. Результатом, а точнее полезным продуктом этой реакции является электрический постоянный ток и тепло, которое не используется. Электрическая ёмкость щелочной батарейки составлет около 1700 — 3000 мАч. По величине своей ёмкости, щелочные батарейки лидируют по сравнению с солевыми батарейками, электроёмкость которых меньше и составляет 550 — 1100 мАч.

Щелочная батарейка устроена следующим образом. Взглянем на рисунок.

Корпусом элемента является никелированный стальной стакан. Он же является плюсовым контактом батарейки « +». Активная масса представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь порошка цинка (Zn) и густого щелочного электролита. Электролитом обычно служит раствор гидроксида калия (KOH). Анодная паста отделена от активной массы сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Также сепаратор пропитан электролитом.

Отрицательный потенциал снимается с латунного стержня, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «».

Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. В толще прокладки имеется защитный клапан или по-другому предохранительная мембрана. Защитный клапан служат для того, чтобы при чрезмерном давлении газа сработать и выпустить его наружу. Это предотвращает взрыв щелочного элемента, но и приводит к его разгерметизации. Как правило, разгерметизация приводит к течи электролита.

Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Он может вызвать коррозию контактов. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.

Как работает щелочной элемент.

Для начала, маленькое отступление…
Как вы заметили, почему то анодная паста соединяется с помощью токосъёмника с отрицательным контактом элемента – стальной тарелкой. А ведь анод – это « +». Получается нестыковочка…

В чём тут дело? А дело в том, что в электронике есть один каламбур. По умолчанию, за направление тока в электрической цепи считается направление от плюса (анода) к минусу (катоду) – так повелось ещё с тех времён, когда электроника ещё зарождалась.

Но ведь электрический ток, как известно, это упорядоченное движение электронов, которые имеют отрицательный заряд. И поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. Именно поэтому образуется эта нестыковка, которая порой вводит начинающих радиолюбителей в ступор.

В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления. Так вот в щелочной батарейке (и не только) на аноде в результате окисления образуется избыток электронов. То есть по сути – это катод, «минус». Но, как уже говорилось, в электрохимии всё наоборот. Итак, электроны вырабатываются анодной пастой – смесью цинкового порошка (Zn) и густого электролита (раствора KOH).

Катодом же считается электрод, где происходит реакция восстановления. Далее электроны, которые были получены в результате реакции окисления, проходят по электрической цепи электронного прибора, и возвращаются опять в батарейку, но уже на катод, где эти электроны используются для восстановительной химической реакции. Катод – это диоксид марганца. Токоприёмником катода служит никелированный стальной стакан, который контактирует с активной массой – диоксидом марганца (MnO2).

Вот такая игра в наоборот. Напомню ещё раз, что в электронике за направление тока в цепи считается направление от плюса-«анода» к минусу-«катоду». В электрохимии всё наоборот. С этим и связаны особенности в названии реагентов химического источника тока.

Можно ли заряжать батарейки?

Также часто можно слышать вопрос: «Можно ли заряжать батарейки?» Ответим: «Лучше не стоит». Дело в том, что для вырабатывания электрической энергии в батарейках используется необратимая химическая реакция. Поэтому батарейка и является первичным источникам тока.

А вот в аккумуляторах используется обратимая химическая реакция, которая позволяет заряжать и разряжать их множество раз. Поэтому аккумуляторы и называют вторичными источниками тока.

Несмотря на это, известно, что щелочные элементы допускают перезарядку, т.е. их можно зарядить и использовать повторно. Но такие, перезаряжаемые щелочные элементы имеют свою особую конструкцию. Также стоит отметить, что даже такие элементы нельзя перезаряжать много раз, обычно не более 25. В широкой продаже такие щелочные элементы не встречаются. Их маркируют как Rechargeable Alkaline Manganese.

Из всего этого следует, что заряжать обычные щелочные батарейки категорически не стоит. Такие эксперименты могут завершиться взрывом батарейки и разбрызгиванием электролита. А это не есть гуд +опасно для здоровья .

Чтобы замедлить химическую реакцию в щелочном элементе и, тем самым, продлить срок её хранения и снизить саморазряд батареи, в них раньше добавляли кадмий и ртуть. Эти вещества замедляли химическую реакцию, и цинк окислялся медленнее. Но, из-за токсичности ртути и кадмия их сейчас не используют, а применяют другие, менее вредные ингибиторы.

На многих батарейках можно даже увидеть надпись – 0% кадмия и ртути или 0% Hg & Cd. Это своеобразный маркетинговый ход, как бы намекающий на то, что данные батарейки безопасны.

Если вы с успехом дошли до этих строк, то теперь вас можно поздравить, ведь теперь вы знаете, как устроена и работает щелочная батарейка. И поэтому её и не обязательно разбирать . Кроме щелочных элементов питания существуют и другие, но об их устройстве мы расскажем в другой раз.

Химические источники тока: основные характеристики

Уже более двух столетий человечество использует энергию химических реакций между различными веществами для получения постоянного тока.

Принцип работы

Окислительно-восстановительная реакция, протекающая между веществами, обладающими свойствами окислителя и восстановителя, сопровождаются выделением электронов, движение которых образует электрический ток. Однако, чтобы использовать его энергию, необходимо создать условия для прохождения электронов через внешнюю цепь, в противном случае она при простом смешивании окислителя и восстановителя выделяется во внешнюю среду теплом.

Поэтому все химические источники тока имеют два электрода:

анод, на котором происходит окисление;

катод, осуществляющий восстановление вещества.

Электроды на расстоянии помещены в сосуд с электролитом — веществом, проводящим электрический ток за счет процессов диссоциации среды на ионы.

Принцип преобразования химической энергии в электрическую

На рисунке показано, что электроды размещены в отдельных сосудах, соединенных солевым мостиком, через который создается движение ионов по внутренней цепи. Когда внешняя и внутренняя цепь разомкнуты, то на электродах протекают два процесса: переход ионов из металла электрода в электролит и переход ионов из электролита в кристаллическую решетку электродов.

Скорости протекания этих процессов одинаковы и на каждом электроде накапливаются потенциалы напряжения противоположных знаков. Если их соединить через солевой мостик и приложить нагрузку, то возникнет электрическая цепь. По внутреннему контуру электрический ток создается движением ионов между электродами через электролит и солевой мостик. По внешней цепи возникает движение электронов по направлению от анода на катод.

Читайте также  Экзамен по химии за 9 класс

Практически все окислительно-восстановительные реакции сопровождаются выработкой электроэнергии. Но ее величина зависит от многих факторов, включающих объемы и массы используемых химических веществ, примененных материалов для изготовления электродов, типа электролита, концентрации ионов, конструкции.

Наибольшее применение в современных химических источниках тока нашли:

для материала анода (восстановителя) — цинк (Zn), свинец (Pb), кадмий (Cd) и некоторые другие металлы;

для материала катода (окислителя) — оксид свинца PbO2, оксид марганца MnO2, гидроксооксид никеля NiOOH и другие;

электролиты на основе растворов кислот, щелочей или соли.

Способы классификации

Одна часть химических источников тока может повторно использоваться, а другая нет. Этот принцип взят за основу их классификации.

Классификация химических элементов

Электродвижущая сила гальванических элементов, в зависимости от конструкции, достигает 1,2÷1,5 вольта. Для получения больших значений их объединяют в батареи, соединяя последовательно. При параллельном подключении батарей увеличивается ток и мощность.

Принято считать, что первичные химические источники тока не поддерживают повторную зарядку, хотя более точно это положение можно сформулировать по-другому: ее проведение экономически не целесообразно.

Резервные первичные химические источники тока хранятся в состоянии, когда электролит изолирован от электродов. Это исключает протекание окислительно-восстановительной реакции и обеспечивает готовность к вводу в работу. Они не используются повторно. Срок хранения резервных химических источников тока ограничен в 10÷15 лет.

Аккумуляторы успешно перезаряжаются приложением внешней электрической энергии. Благодаря этой возможности их называют вторичными источниками тока. Они способны выдерживать сотни и тысячи циклов заряда-разряда. ЭДС аккумулятора может быть в пределах 1,0÷1,5 вольта. Их тоже объединяют в батареи.

Электрохимические генераторы работают по принципу гальванических элементов, но у них для проведения электрохимической реакции вещества поступают извне, а все выделяющиеся продукты удаляются из электролита. Это позволяет организовать непрерывный процесс.

Основные рабочие характеристики химических источников тока

1. Величина напряжения на разомкнутых клеммах

В зависимости от конструкции единичный источник может создавать только определенную разность потенциалов. Для использования в электрических устройствах их объединяют в батареи.

2. Удельная емкость

За определенное время (в часах) один химический источник тока может выработать ограниченное количество тока (в амперах), которые относят к единице веса либо объема.

3. Удельная мощность

Характеризует способность единицы веса или объема химического источника тока вырабатывать мощность, образованную произведением напряжения на силу тока.

4. Продолжительность эксплуатации

Еще этот параметр называют сроком годности.

5. Значение токов саморазряда

Эти побочные процессы электрохимических реакций приводят к расходу активной массы элементов, вызывают коррозию, снижают удельную емкость.

6. Цена на изделие

Зависит от конструкции, применяемых материалов и ряда других факторов.

Лучшими химическими источниками тока считаются те, у которых высокие значения первых четырех параметров, а саморазряд и стоимость низкие.

Принципы заряда аккумуляторов

Среди вторичных химических источников тока большую популярность набирают литий ионные модели, которые стали массово применяться для питания электронных устройств. У них материалом положительного электрода используется LiMO2 (M Co, Ni, Mn), а отрицательного — графит.

При заряде ионы лития от приложенной внешней энергии выделяются из металла катода, проходят через электролит и проникают в пространство между слоями графита, накапливаясь там.

Когда энергия зарядного устройства отсутствует, а к электродам подключена нагрузка, то ионы лития в электролите двигаются в противоположную сторону.

Если заряд и разряд не проводятся, то энергия в аккумуляторе не расходуется, а сохраняется. Но ее количество ограничивается свойствами применяемых материалов. К примеру, у литий-ионных аккумуляторов значение удельной электроемкости составляет 130÷150 мАч/г. Оно лимитировано свойствами материала анода. Для графита емкость выше примерно в два раза.

Ученые сейчас ищут способы повышения емкости аккумулятора, изучают возможности использования химической реакции, проходящей между литием и кислородом воздуха. Для этого разрабатываются конструкции с воздушным, не расходуемым катодом, используемые в отдельных аккумуляторах. Этот метод может до 10 раз увеличить плотность энергии.

Эксплуатация химических источников тока требует знания основ электротехники, электрохимии, материаловедения и физики твердых тел.

Химические источники тока

Химические источники тока

Хими́ческие исто́чники то́ка (аббр. ХИТ) — устройства, в которых энергия протекающих в них химических реакций непосредственно превращается в электрическую энергию.

Содержание

История создания

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был элемент Вольта — сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенными проволокой. Затем учёный собрал батарею из этих элементов, которая впоследствии была названа Вольтовым столбом. Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал Вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Дэниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться «элементом Даниэля».

В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор. Этот тип элемента и по сей день используется в автомобильных аккумуляторах.

В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2 с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств.

В 1890 году в Нью-Йорке Конрад Губерт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia».

Принцип действия

Основу химических источников тока составляют два электрода (катод, содержащий окислитель и анод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая разрядный ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.

В современных химических источниках тока используются:

  • в качестве восстановителя (на аноде) — свинец Pb, кадмий Cd, цинк Zn и другие металлы;
  • в качестве окислителя (на катоде) — оксид свинца(IV) PbO2, гидроксооксид никеля NiOOH, оксид марганца(IV) MnO2 и другие;
  • в качестве электролита — растворы щелочей, кислот или солей.

Классификация

По возможности или невозможности повторного использования химические источники тока делятся на:

  • гальванические элементы (первичные ХИТ), которые из-за необратимости протекающих в них реакций, невозможно перезарядить;
  • электрические аккумуляторы (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить;
  • топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.

Следует заметить, что деление элементов на гальванические и аккумуляторы до некоторой степени условное, так как некоторые гальванические элементы, например щелочные батарейки, поддаются подзарядке, но эффективность этого процесса крайне низка.

Некоторые виды химических источников тока

Гальванические элементы

Смотри также Категория:Гальванические элементы.

Тип Катод Электролит Анод Напряжение,
В
Марганцево-цинковый элемент MnO2 KOH Zn 1.56
Марганцево-оловянный элемент MnO2 KOH Sn 1.65
Марганцево-магниевый элемент MnO2 MgBr Mg 2.00
Свинцово-цинковый элемент PbO2 H2SO4 Zn 2.55
Свинцово-кадмиевый элемент PbO2 H2SO4 Cd 2.42
Свинцово-хлорный элемент PbO2 HClO4 Pb 1.92
Ртутно-цинковый элемент HgO KOH Zn 1.36
Ртутно-кадмиевый элемент HgO2 KOH Cd 1.92
Окисно-ртутно-оловянный элемент HgO2 KOH Sn 1.30
Хром-цинковый элемент K2Cr2O7 H2SO4 Zn 1.8—1.9
  • Свинцово-плавиковый элемент
  • Медно-окисный гальванический элемент
  • Висмутисто-магниевый элемент
  • Ртутно-висмутисто-индиевый элемент
  • Литий-хромсеребряный элемент
  • Литий-висмутатный элемент
  • Литий-окисномедный элемент
  • Литий-йодсвинцовый элемент
  • Литий-йодный элемент
  • Литий-тионилхлоридный элемент
  • Литий-оксидванадиевый элемент
  • Литий-фторомедный элемент
  • Литий-двуокисносерный элемент
  • Диоксисульфатно-ртутный элемент
  • Серно-магниевый элемент
  • Хлористосвинцово-магниевый элемент
  • Хлорсеребряно-магниевый элемент
  • Хлористомедно-магниевый элемент
  • Йодатно-цинковый элемент
  • Магний-перхлоратный элемент
  • Магний-м-ДНБ элемент
  • Цинк-хлоросеребряный элемент
  • Хлор-серебряный элемент
  • Бром-серебряный элемент
  • Йод-серебряный элемент
  • Магний-ванадиевый элемент
  • Кальций-хроматный элемент

Лекция «Химические источники тока»

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

ПОНЯТИЕ ОБ ЭЛЕКТРОДНЫХ ПОТЕНЦИАЛАХ, ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССАХ

В основе всех электрохимических процессов лежит теория возникновения скачка потенциалов на границе металл — электролит, предложенная Нернстом. Основные положения этой теории заключаются в следующем:

Читайте также  Психологические особенности нехимических зависимостей

1. Металлы имеют кристаллическое строение. В узлах решеток расположены катионы и атомы, а в межузловом пространстве электроны, называемые электронным газом.

Оторвавшиеся электроны переходят в межузловое пространство и участвуют в образовании металлической связи.

2. Абсолютно нерастворимых веществ не существует.

При погружении металлической пластинки в полярный растворитель она начнет растворяется: полярные молекулы взаимодействуют с ионами металла, находящимися на поверхности. В результате этого взаимодействия пластинка заряжается отрицательно, а прилегающий слой положительно вследствие, чего между металлом и водой создается разность потенциалов, называемая электродным потенциалом металла.

Электродный потенциал зависит от следующих факторов:

1. Природа металла: чем меньше энергия ионизации металла, тем более отрицательное значение принимает электродный потенциала металла и тем более металл электрохимически активен.

2. Активность металла: Она определяется положением металла в ряду стандартных электродных потенциалов. Чем левее расположен металл в этом ряду, тем выше его восстановительная активность и ниже окислительная способность его катиона в растворе и наоборот.

В связи со значением электродных потенциалов металлы делятся на три группы:

1 Активные от Li до Zn

2. Средней активности от Fe до H

3. Неактивные правее H .

Все металлы: активные, средней активности и неактивные в воде, растворах кислот заряжаются отрицательно, а раствор положительно.

Активные металлы в растворах собственных солей при стандартных условиях заряжаются отрицательно, а неактивные положительно .

ХИМИЧЕСКИЕ ИСТОЧНИКИ ТОКА

Электрохимия – это раздел химии изучающий взаимные превращения химической и электрической энергии. В химических реакциях, идущих под воздействием электрического тока (электролиз) электрическая энергия превращается в химическую. В химических источниках тока, в частности, в гальванических элементах энергия химической реакции преобразуется в электрическую энергию.

Устройство и принцип работы гальванического элемента (ГЭ)

ГЭ состоит из двух электродов, замкнутых проводниками первого и второго рода.

Проводник первого рода представляет собой металл, по которому движутся избыточные электроны.

Проводник второго рода – это раствор электролита, в котором по электролитическому мостику движутся анионы электролита.

Электрод – это система, состоящая из металлической пластины, погруженной в раствор электролита. Роль электролита может выполнять соль этого же металла.

В зависимости от природы электродов, состава и концентрации электролитов различают разные типы ГЭ:

1. Элемент Якоби – Даниэля состоит из Zn и Cu электродов, погруженных в сосуды с растворами сульфатов этих металлов. Растворы электролитов соединены между собой сифонной трубкой, наполненной смоченным в электролите агар-агаром. Сифонная трубка выполняет роль электролитического ключа.

При погружении цинковой пластины в раствор собственной соли часть ионов цинка из пластины перейдет в раствор, в результате чего цинковый пластина зарядится отрицательно, а раствор положительно. В системе цинк-электролит возникает ДЭС, который находится в состоянии равновесия.

На медной пластинке при погружении ее в раствор собственной соли происходит обратный процесс – переход ионов меди из раствора в вакансии в узлах металлической решетки, в результате чего пластинка зарядится положительно, а раствор отрицательно. В системе медь-электролит также возникает ДЭС, который находится в состоянии равновесия.

После соединения электродов проводником первого рода, избыточные электроны с цинкового электрода начнут перемещаться на медный электрод. В результате чего уменьшится отрицательный заряд цинковой пластины и нарушится равновесие ДЭС. Для восстановления равновесия катионы цинка с пластины начнут переходить в раствор и цинковый электрод начнет окисляться.

Электрод, на котором происходит процесс окисления, называют анодом. Роль анода в ГЭ всегда выполняет более электрохимически активный металл:

А: Zn — 2ē ⇄ Zn 2+ — анодный процесс (окисление)

Электроны, пришедшие на медный электрод уменьшат его положительный заряд, поэтому для восстановления равновесия катионы меди из раствора начнут переходить на пластину восстанавливаться.

Электрод, на котором происходит процесс восстановления, называется катодом. Роль катода в ГЭ всегда выполняет менее активный металл:

К: Cu 2+ + 2ē ⇄ Cu – катодный процесс (восстановление)

При замыкании цепи электролитическим ключом избыточные сульфат анионы из емкости с раствором CuSO 4 начнут перемещаться в емкость с раствором ZnSO 4 .

В результате между пластинками возникает разность потенциалов, которая приводит к возникновению электрического тока.

В основе работы элемента ГЭ лежит следующая токообразующая ОВ реакция:

Zn + Cu 2+ ⇄ Zn 2+ + Cu (ионное уравнение)

Zn + CuSO 4 ⇄ ZnSO 4 + Cu (молекулярное уравнение)

Краткая схема ГЭ Я — Д записывается так:

А: Zn 0 / Zn 2+ // Cu 2+ / Cu 0 :К

А : Zn 0 / ZnSO4// Cu SO4 / Cu 0 : К

Эффективность работы ГЭ характеризует его ЭДС, которая вычисляется по формуле:

ЭДС = Ек – Еа, где Ек- электродный потенциал катода, Еа- электродный потенциал анода

ЭДС элемента Я — Д в стандартных условиях равна: ЭДС = Е Cu 2+ / Cu 0 – Е Zn 0 / Zn 2+ = 0,344 – (- 0,763) = 1,1В

Данный ГЭ будет работать до тех пор, пока полностью не окислятся атомы цинка или полностью восстановятся ионы меди. Элемент Я — Д является обратимым, т.к. пропускание электрического тока в обратном направлении вызовет обратную реакцию, т.е. растворение меди и осаждение цинка.

2. Элемент Вольта. В элементе Вольта цинковый и медный электроды погружены в раствор серной кислоты. При работе данного ГЭ на цинковом электроде (аноде) происходит окисление цинка:

А: Zn — 2ē ⇄ Zn 2+ — анодный процесс

а на медном электроде (катоде) в отличие от элемента Я — Д восстановление ионов водорода из серной кислоты:

К: 2Н + + 2ē ⇄ Н2 0 – катодный процесс.

Указанные процессы протекают по уравнениям:

Zn + 2Н + ⇄ Zn 2+ + Н2 (ионное уравнение)

Zn + Н2 SO 4 ⇄ Zn SO 4 + Н2 (молекулярное уравнение)

Химическая цепь, лежащая в основе работы данного ГЭ записывается так:

ЭДС элемента Вольта, как и любого другого элемента определяется по формуле:

Элемент Вольта является необратимым ГЭ.

3. Концентрационные ГЭ состоят из двух одинаковых электродов (изготовленных из одного металла), которые погружены в растворы солей этих металлов различной концентрации С1 и С2, причем С1 > С2

Из уравнения Нернста следует, что чем больше концентрация ионов металла в растворе, тем менее отрицательное значение будет принимать электродный потенциал и наоборот, чем меньше концентрация ионов металла в растворе, тем более отрицательное значение будет принимать электродный потенциал. Поэтому металл, погруженный в более концентрированный раствор будет выполнять роль катода, а в менее концентрированный роль анода.

При работе данного ГЭ на аноде, происходит процесс — окисления Al 0 , а на катоде процесс восстановления Al +3 :

А: Al 0 — 3ē ⇄ Al 3+ — анодный процесс

К: Al 3+ + 3ē ⇄ Al 0 – катодный процесс

Концентрационный ГЭ будет работать до тех пор, пока не выровняются концентрации растворов.

Химическая цепь, лежащая в основе работы данного ГЭ записывается так:

Для определения ЭДС данного элемента применяют уравнение Нернста: Ес = Ео + 0,059 ´ ℓ g С m / n ,, но т.к. металл в концентрационной цепи один и тот же, то выражение примет вид: ЭДС = 0,059 ´ ℓ g С12

В процессе работы ГЭ его ЭДС постепенно уменьшается. Явление изменения значений электродных потенциалов анода и катода при прохождении электрического тока называется поляризацией. Различают анодную и катодную поляризацию. При катодной поляризации потенциал катода становится более отрицательным. При анодной поляризации потенциал анода становится более положительным. Это объясняется следующими причинами:

1. Скорость перехода электронов с анода на катод больше скорости перехода ионов металла из электрода в раствор. В результате значение электродного потенциала смещается в сторону положительных значений.

2. В процессе растворения анода, концентрация ионов металла в прианодном пространстве возрастает, что также приводит к увеличению значения электродного потенциала.

3. Скорость перехода электронов с анода на катод больше скорости восстановления ионов металла на катоде, что смещает потенциал в сторону отрицательных значений.

Поляризация является отрицательным явлением, т.к. снижает ЭДС ГЭ.

Для борьбы с поляризацией в раствор электролитов добавляют вещества деполяризаторы, например О2, MnO 2 , K 2 Cr 2 O 7 .

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: