Химический состав клетки - ABCD42.RU

Химический состав клетки

2.3 Химический состав клетки. Макро- и микроэлементы


Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

макроэлементы, содержание которых не ниже 0,01%;

микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.

Азот, кислород, водород, углерод. Это основные компоненты клетки.

Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.

Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.

Магний – компонент хлорофилла. Участвует в синтезе белков.

Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

Цинк – компонент инсулина;

Медь – участвует в фотосинтезе и дыхании;

Кобальт – компонент витамина В12;

Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;

Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.

В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.

Неорганические вещества клетки

Вода . От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:

капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:

переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;

формировании нервных импульсов, имеющих электрохимическую природу;

входят в состав белков;

фосфат-ион – компонент нуклеиновых кислот и АТФ;

карбонат-ион – поддерживает Ph в цитоплазме.

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры.

Основные классы, имеющиеся в живых организмах:

Углеводы . В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.

Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.

Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.

Сахароза (дисахарид) – источник энергии, образуется в растениях.

Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.
Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям). Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м. Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон. Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липидную структуру. Жиры входят в основу структуры мембран.


Белки или протеины
являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовывать между собой связи. Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи. В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

первичная структура – аминокислотная цепочка;

вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;

третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;

четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры.

Белки выполняют в клетке множество функций:

ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);

транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;

защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.

структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;

регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;

энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано в 1953 г американцами Д. Уотсоном и Ф. Криком.

Читайте также  Звездный нуклеосинтез – источник происхождения химических элементов

Мономерные ее единицы —нуклеотиды, имеющие принципиально общую структуру из:

азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

вместо тиминового нуклеотида – урациловый;

рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

Химический состав клетки

Средняя оценка: 4.5

Всего получено оценок: 2784.

Средняя оценка: 4.5

Всего получено оценок: 2784.

Все организмы на нашей планете состоят из клеток, которые схожи между собой химическим составом. В данной статье мы кратко расскажем о химическом составе клетки, роль различных веществ в жизнедеятельности всего организма, узнаем, какая наука изучает данный вопрос.

Группы элементов химического состава клетки

Наука, которая изучает строение живой клетки, называется цитологией. Химический состав клеток и превращения веществ в организме рассматривает наука биохимия.

Все элементы, входящие в химическую структуру организма, можно условно поделить на три группы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

К макроэлементам относятся водород, углерод, кислород и азот. На их долю приходится почти 98% массы всех составных элементов. Эти макроэлементы называются органогенными, так как они образуют молекулы органических веществ (белков, нуклеиновых кислот, жиров, углеводов).

Микроэлементы имеются в количестве от стотысячных до тысячных долей процента. Например, хром, медь, цинк и другие. И совсем малое содержание в клетке ультрамикроэлементов – миллионные доли процента.

которые читают вместе с этой

В переводе с греческого «макрос» – большой, а «микро» – маленький.

Учёные установили, что каких-либо особенных элементов, которые присущи только лишь живым организмам, нет. Поэтому и живая, и неживая природа состоит из одних и тех же элементов. Этим доказывается их общность и взаимосвязь.

Несмотря на количественное содержание, входящие в состав живого элементы играют важную роль. Поддержание постоянного химического состава в организме является важным условием жизни. Ведь у каждого из химических элементов есть своё значение.

Роль некоторых химических элементов клетки

Макроэлементы углерод, водород, кислород и азот являются основой биополимеров, а именно белков и нуклеиновых кислот, первые три из них входят в состав углеводов и липидов. В состав органических веществ входят также фосфор и сера.

Многие элементы входят в состав жизненно важных веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет кислотность среды. Чаще всего она слабощелочная. Ионы натрия и калия участвуют в проведение нервных импульсов.

Гемоглобин содержит железо, хлорофилл – магний, твердость костям и зубам придают нерастворимые соли кальция.

Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является хорошим растворителем, из-за этого все вещества внутри организма делятся на:

  • Гидрофильные– растворяются в воде;
  • Гидрофобные– не растворяются в воде.

Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме, является участником различных реакция (например, фотосинтеза), участвует в регуляции температурного режима.

Рис. 3. Вещества клетки.

Таблица “Свойства химического состава клетки”

Чтобы наглядно понять, какую роль играют химические элементы, входящие в состав клетки, мы внесли их в следующую таблицу:

Элементы

Значение

Кислород, углерод, водород, азот.

Содержатся в органических веществах и воде.

Составной компонент оболочки у растений, в животном организме находится в составе костей и зубов, принимает активное участие в свёртываемости крови.

Содержится в нуклеиновых кислотах, ферментах, клеточных мембранах в составе фосфолипидов, костной ткани и зубной эмали в соединении с кальцием.

Является основой белков, ферментов и витаминов.

Обеспечивает передачу нервных импульсов, активирует синтез белка, процессы фотосинтеза и роста.

Один из компонентов желудочного сока, провокатор ферментов.

Принимает активное участие в обменных процессах, компонент гормона щитовидной железы.

Обеспечивает передачу импульсов в нервной системе, поддерживает постоянное давление внутри клетки, провоцирует синтез гормонов.

Составной элемент хлорофилла, костной ткани и зубов, провоцирует синтез ДНК и процессы теплоотдачи.

Составная часть гемоглобина, хрусталика, роговицы, участвует в синтезе хлорофилла, транспорте кислорода по организму.

Химический состав клетки

Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Одних химических элементов в клетке больше, других — меньше.

На атомарном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается. Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов.

Условно все элементы клетки можно разделить на три группы.

Содержание

Макроэлементы

К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.

Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.

Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.

Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины, гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.

Читайте также  Лекции по биохимии углеводов

Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.

Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).

Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.

Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции (в том числе в работе почек у человека) и создании буферной системы крови.

Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы.Содержится в межклеточных веществах.

Хлор — поддерживает электронейтральность клетки.

Микроэлементы

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк

Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Селен — участвует в регуляторных процессах организма.

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

Молекулярный состав клетки

Соединения
Неорганические Органические
Вода
Минеральные соли
70—80 %
1,0—1,5 %
Белки
Углеводы
Жиры
Нуклеиновые кислоты
АТФ, соли и др. вещества
10—20 %
0,2—2,0 %
1—5 %
1,0—2,0 %
0,1—0,5 %

См. также

  • Биологически значимые элементы
  • Клетка
  • Сравнение строения клеток бактерий, растений и животных

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проверить достоверность указанной в статье информации.
  • Исправить статью согласно стилистическим правилам Википедии.
  • Проставив сноски, внести более точные указания на источники.
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

  • Римское право
  • Федеральное космическое агентство России

Смотреть что такое «Химический состав клетки» в других словарях:

Строение и химический состав бактериальной клетки — Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения. Клеточная стенка.… … Биологическая энциклопедия

Строении клетки красных водорослей — Своеобразие внутриклеточного строения красных водорослей складывается как из особенностей обычных клеточных компонентов, так и из наличия специфических внутриклеточных включений. Клеточные оболочки. В клеточных оболочках красных… … Биологическая энциклопедия

Серебро химический элемент — (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Серебро, химический элемент — (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Клетка — У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

Комплексный справочник по Биологии — Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия

Живая клетка — Клетка элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию,… … Википедия

Клетка (биология) — Клетка элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию,… … Википедия

цитохимия — (цито + химия) раздел цитологии, изучающий химический состав клетки и ее компонентов, а также обменные процессы и химические реакции, которые лежат в основе жизнедеятельности клетки … Большой медицинский словарь

Цитохи́мия — (Цито + химия) раздел цитологии, изучающий химический состав клетки и ее компонентов, а также обменные процессы и химические реакции, которые лежат в основе жизнедеятельности клетки … Медицинская энциклопедия

Биология. 5 класс

Конспект урока

Биология, 5 класс

Урок 5. Химический состав клетки

Перечень вопросов, рассматриваемых на уроке:

  1. Урок посвящён изучению химического состава клетки.

Ключевые слова:

Клетка, химический состав, неорганические и органические вещества, вода, минеральные соли, белки, жиры, углеводы, нуклеиновые кислоты

Химический элемент – это атомы одного и того же вида.

Органические вещества – это вещества, которые входят в состав живых организмов и образуются только при их участии.

Неорганические вещества – это вещества, которые входят в состав неживой природы и могут образовываться без участия живых организмов.

Обязательная и дополнительная литература по теме

  1. Биология. 5–6 классы. Пасечник В. В., Суматохин С. В., Калинова Г. С. и др. / Под ред. Пасечника В. В. М.: Просвещение, 2019
  2. Биология. 6 класс. Теремов А. В., Славина Н. В. М.: Бином, 2019.
  3. Биология. 5 класс. Мансурова С. Е., Рохлов В. С., Мишняева Е. Ю. М.: Бином, 2019.
  4. Биология. 5 класс. Суматохин С. В., Радионов В. Н. М.: Бином, 2014.
  5. Биология. 6 класс. Беркинблит М. Б., Глаголев С. М., Малеева Ю. В., Чуб В. В. М.: Бином, 2014.
  6. Биология. 6 класс. Трайтак Д. И., Трайтак Н. Д. М.: Мнемозина, 2012.
  7. Биология. 6 класс. Ловягин С. Н., Вахрушев А. А., Раутиан А. С. М.: Баласс, 2013.

Теоретический материал для самостоятельного изучения

Сейчас на Земле известно более ста химических элементов. Из их атомов состоят все вещества, встречающиеся на Земле. 80 химических элементов обнаружены в составе живых организмов. При этом четыре из них – углерод, водород, азот и кислород составляют около 98 % массы любого организма. Остальные химические элементы встречаются в живых организмах в малых количествах.

Клетки всех живых организмов состоят из одних и тех же химических элементов. Эти же элементы входят и в состав объектов неживой природы. Сходство состава указывает на общность живой и неживой природы.

Читайте также  Химия в быту

На этом уроке вы узнаете, из каких химических элементов состоят клетки живых организмов, и какие изменения претерпевают эти химические соединения по мере роста и развития клеток.

В клетках живых организмов больше всего содержится таких химических элементов, как углерод, водород, кислород и азот. Вместе они составляют до 98 % массы клетки. Около 2 % массы клетки приходится на восемь элементов: калий, натрий, кальций, хлор, магний, железо, фосфор и серу. Остальные химические элементы содержатся в клетках в очень малых количествах.

Химические элементы, соединяясь между собой, образуют неорганические (вода и минеральные соли) и органические (белки, жиры, углеводы, нуклеиновые кислоты и др.) вещества.

Значение каждого из веществ, содержащегося в клетке уникально. Вода придаёт клетке упругость, определяет её форму, участвует в обмене веществ. Неорганические вещества используются для синтеза органических молекул. При недостатке минеральных веществ важнейшие процессы жизнедеятельности клеток нарушаются. Углеводы придают прочность клеточным оболочкам, а также служат запасающими веществами. Белки входят в состав разнообразных клеточных структур, регулируют процессы жизнедеятельности и тоже могут запасаться в клетках. Жиры откладываются в клетках. При расщеплении жиров освобождается необходимая живым организмам энергия. Нуклеиновые кислоты играют ведающую роль в сохранении наследственной информации.

Клетка – это миниатюрная природная лаборатория, в которой синтезируются и претерпевают изменения различные химические соединения. Сходство химического состава клеток разных организмов доказывает единство живой природы.

Разбор типового тренировочного задания:

Тип задания: Сортировка элементов по категориям

Текст вопроса: Расставьте названия веществ в таблицу:

Химическая организация клеток живых организмов — состав, вещества и функции

  1. Таблица. Основные химические элементы в клетках живых организмов
  2. Значение органических соединений в клетке
  3. Роль воды в клетке

Элементы — это основные единицы материи. Из 92 стабильных элементов, найденных на Земле, только 25 встречаются в организмах живых существах и 16–18 являются жизненно важными. Элементы, которые, как известно, имеют универсальное значение для всех живых организмов, включают водород (H), кислород (O), углерод (C), азот (N), кальций (Ca), фосфор (P), калий (K), серу (S), хлор (Cl), натрий (Na), магний (Mg) и железо (Fe).

Все элементы, которые входят в химический состав организма, в зависимости от их доли содержания в клетке, можно разделить на четыре группы:

Органогены (биоэлементы) – химические элементы, которые входят в состав всех органических соединений и составляют примерно 98% от массы клетки:

  • Водород – компонент воды и органических молекул
  • Углерод – основа органических молекул
  • Азот – компонент белков и нуклеиновых кислот
  • Кислород – необходим для клеточного дыхания

Макроэлементы – элементы, содержащиеся в клетке в значительно меньших количествах – десятые и сотые доли процента:

  • Натрий – важен в функционировании нервов
  • Магний – компонент хлорофилла
  • Фосфор – компонент нуклеиновых кислот, костей и зубов
  • Сера – компонент некоторых белков и витаминов
  • Хлор – главный анион в жидкостях вне клетки
  • Калий – важен в функционировании нервов
  • Кальций – кофактор ферментов, запускающий сокращение мышц и компонент костей, зубов и клеточных стенок растений

Микроэлементы – элементы, составляющие от 0,001% до 0,000001% массы живого организма:

  • Железо – кофактор многих ферментов и составная часть гемоглобина
  • Йод – участвует в обменных процессах

Ультрамикроэлементы – на их долю приходится менее 0,000001% от массы живого организма. К этой группе принадлежат золото, серебро, обладающие бактерицидным воздействием, ртуть, препятствующая обратному всасыванию воды в почечных канальцах, влияя на ферменты.

Химические соединения в клетке также могут быть разделены на две основные группы: органические и неорганические соединения.

Органические соединения являются химическими соединениями, которые содержат углерод. К органическим веществам в клетке относятся углеводы, белки, липиды и нуклеиновые кислоты. Некоторые из этих соединений синтезируются самой клеткой.

Вода — это неорганическое соединение, которое состоит из водорода и кислорода. Это важное вещество, но в клетке также содержится множество других химических элементов, с которыми мы ознакомимся в таблице ниже.

Таблица. Основные химические элементы в клетках живых организмов

Содержание элемента в процентном соотношении Название элемента Значение
65% Кислород Этот элемент, очевидно, является самым важным в клетках живых организмов. Атомы кислорода присутствуют в воде, которая является наиболее распространенным веществом в организме, и других соединениях, составляющих ткани. Он также содержится в крови и легких благодаря дыханию
18.6% Углерод Углерод содержится в каждой органической молекуле в организме, а также в побочных продуктах дыхания (углекислый газ). Обычно он попадает в организм вместе с пищей
9.7% Водород Содержится во всех молекулах воды в организме, а также во многих других соединениях, составляющих различные ткани
3.2% Азот Очень распространен в белках и органических соединениях. Он также присутствует в легких из-за его обилия в атмосфере
1.8% Кальций Является основным компонентом скелетной системы, включая зубы. Он также содержится в нервной системе, мышцах и крови
1.0% Фосфора Этот элемент распространен в костях и зубах, а также в нуклеиновых кислотах
0.4% Калий Калий содержится в мышцах, нервах и некоторых тканях живых организмов
0.2% Натрий Содержится в мышцах и нервах
0.2% Хлор Присутствует в коже и облегчает поглощение воды клетками
0.06% Магний Служит кофактором для различных ферментов в организме
0.04% Сера Присутствует во многих аминокислотах и белках
0.007% Железо Содержится в основном в крови, облегчает транспортировку кислорода
0.0002% Йод Встречается в гормонах в щитовидной железе, участвует в обменных процессах

Значение органических соединений в клетке

  • Служат энергией для клеточных процессов
  • Средство накопления энергии
  • Обеспечивают структурную поддержку клеточным стенкам
  • Хранят большое количество энергии в течение длительного периода времени
  • Действуйте как источник энергии
  • Играют важную роль в структуре клеточных мембран
  • Являются источником метаболической воды
  • Сокращают потери воды при испарении
  • Действуют как строительные блоки многих структурных компонентов клетки; необходимы для роста
  • Образуют ферменты, катализирующие химические реакции
  • Образуют гормоны, которые контролируют рост и обмен веществ
  • Содержат генетическую информацию клеток
  • Играют жизненно важную роль в синтезе белка
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: