Классификация химических реакций - ABCD42.RU

Классификация химических реакций

Классификация химических реакций

Химическая реакция — это превращение одних веществ (реагентов) в другие, отличающиеся по химическому составу или строению (продукты реакции).

ПРИЗНАКИ ХИМИЧЕСКИХ РЕАКЦИЙ

Химическое превращение от физического всегда можно отличить по наличию одного или нескольких признаков:

· образование слабодиссоциированных веществ (например, воды);

· выделение энергии (тепловой или световой).

ТИПЫ КЛАССИФИКАЦИЙ ХИМИЧЕСКИХ РЕАКЦИЙ

Существует несколько подходов к классификации химических реакций, основные из них представлены на схеме ниже.

Рассмотрим их подробнее.

КЛАССИФИКАЦИЯ ПО ЧИСЛУ И СОСТАВУ РЕАГИРУЮЩИХ И ОБРАЗУЮЩИХСЯ ВЕЩЕСТВ

Первая реакция является реакцией соединения (иногда говорят присоединения), поскольку из двух веществ получается одно. Во второй реакции, наоборот, из одного вещества получается два и это реакция разложения.

В реакциях замещения простое вещество замещает один из элементов в сложном веществе, в результате чего получается новое просто вещество и новое сложное вещество. Например:

В реакциях обмена два сложных вещества обмениваются своими составными частями и образуется два новых сложных вещества:

КЛАССИФИКАЦИЯ ПО ИЗМЕНЕНИЮ СТЕПЕНИ ОКИСЛЕНИЯ

Окислительно-восстановительные реакции (ОВР) — реакции, протекающие с изменением степеней окисления элемента(ов).

В любой окислительно-восстановительной реакции (ОВР) всегда должен быть как минимум один элемент, повышающий степень окисления ( восстановитель ), и другой — понижающий степень окисления ( окислитель ).

Если элемент-окислитель и элемент-восстановитель входят в состав разных молекул, то такая ОВР называется межмолекулярной .

Если же эти элементы входят в состав одной молекулы, такие реакции называются внутримолекулярными ОВР.

6 KOH (конц.) + 3 Cl 2 = KClO 3 + 5 KCl + 3 H 2 O

Cl 0 2 + 1 ⋅ 2 e ¯→ 2 Cl − | 5 окислитель, процесс восстановление

Cl 0 2 − 5 ⋅ 2 e ¯→ 2 Cl +5 | 1 восстановитель, процесс окисление

В этой реакции хлор простое вещество одновременно и окислился (до KClO 3 ) и восстановился (до KCl ). Такие реакции называются реакциями диспропорционирования.

Окислительно-восстановительные реакции, в которых один и тот же элемент одновременно и повышает, и понижает степень окисления, называются реакции диспропорционирования .

Противоположны этим реакциям реакции — реакции конпропорционирования:

S +4 + 4 e ¯→ S 0 | 1 окислитель, процесс восстановление

S −2 − 2 e ¯→ S 0 | 2 восстановитель, процесс окисление

Окислительно-восстановительные реакции, в которых один и тот же элемент одновременно и окисляется, и восстанавливается до одной степени окисления, называются реакции конпропорционирования .

Более подробно тема ОВР рассмотрена в темах «ОВР в органической химии» . «Окислительно-восстановительные реакции»

КЛАССИФИКАЦИЯ ПО ТЕПЛОВОМУ ЭФФЕКТУ

Тепловой эффект реакции — ΔH — теплота, поглощаемая или выделяемая системой в ходе химической реакции.

Вспомним, что любая химическая реакция протекает с разрывом старых химических связей и образованием новых. При этом изменяется электронное состояние атомов, их взаиморасположение, а потому и внутренняя энергия продуктов реакции отличается от внутренней энергии реагентов. Как вы знаете, в образовании связи участвуют атомные орбитали. Для молекул с ковалентной связью механизм образования химической связи объясняет метод валентных связей (ВС). Основные принципы метода ВС рассматриваются в теме «Виды, характеристики и механизмы образования химической связи» . Наиболее полно особенности образования связывающих и разрыхляющих орбиталей объясняет метод молекулярных орбиталей, как линейной комбинации атомных орбиталей (МОЛКАО), изучающийся в специальном разделе химической термодинамики и в квантовой химии. Рассмотрим два принципиально возможных варианта перераспределения энергии при протекании химической реакции:

1. Е реагентов > Е продуктов . Благодаря «выигрышу» в энергии атомы соединяются и образуют молекулы. Исходя из закона сохранения энергии, в результате такой реакции избыточная энергия выделяется в окружающую среду, чаще всего в виде тепла или света.

2. Е реагентов В этом случае для протекания реакции необходима дополнительная энергия, которая может быть получена извне в виде дополнительного нагревания, УФ-облучения или в других формах. При этом температура реагирующей системы должна понижаться за счет поглощения энергии.

Экзотермические реакции — реакции, протекающие с выделением тепла (+Q)

Самые типичные экзотермические реакции — это реакции горения. Иногда энергетический «выигрыш» настолько велик, что происходит выделение и тепловой и световой энергии, что чаще всего принято называть взрывом. Например, горение метана в атмосфере воздуха.

В случае, если на образование новых химических связей требуется энергия большая, чем выделилась при разрыве старых связей, то системе требуется дополнительная подача тепла.

Эндотермические реакции — реакции, протекающие с поглощением тепла (-Q)

Термохимические уравнения — уравнения химических реакций с указанием теплового эффекта реакции.

Подробнее термохимические уравнения будут рассмотрены в соответствующем разделе.

КЛАССИФИКАЦИЯ ПО АГРЕГАТНОМУ СОСТОЯНИЮ РЕАГЕНТОВ

Напомним, что существует четыре агрегатных состояния вещества: газ, жидкость, твердое и плазма (последнее встречается крайне редко).

Реакции, протекающие в одной фазе называются гомогенными , например реакция между двумя растворами или между двумя газами. Реакции, протекающие на границе раздела фаз, называются гетерогенными .

Граница раздела фаз присутствует в системе, образованной, например, жидкостью и твердым телом (металл и кислота), твердым телом и газом (гетерогенный катализ), двумя несмешивающимися жидкостями (масло и вода). Чаще всего химические реакции являются гетерогенными.

Агрегатное состояние вещества обычно обозначается буквами русского алфавита нижним индексом в скобках : (г) — газ, (ж) — жидкость, (т) — твердое.

КЛАССИФИКАЦИЯ ПО НАЛИЧИЮ КАТАЛИЗАТОРА

Катализатор — вещество, которое ускоряет скорость химической реакции, но само при этом не расходуется.

Ингибитор — вещество, замедляющее или предотвращающее протекание химической реакции.

Следует понимать, что катализатор участвует в реакции и претерпевает ряд изменений (каталитический цикл), превращается в промежуточные соединения, которые разрушаются к концу каталитического цикла, превращаясь в исходный катализатор. Поэтому иногда в учебниках встречается формулировка: «катализатор в реакции не расходуется».

Природные катализаторы — ферменты , способны в мягких условиях (например, t тела человека равна 36,6 градуса) способствовать тому, что биохимические процессы в организме протекают с эффективностью, близкой к 100%, в то время, как выход промышленных химических процессов редко составляет более 50%.

Ингибиторы используются в быту и в промышленности для подавления протекания нежелательных процессов: старения полимеров, окисления топлива и смазочных масел, пищевых жиров и др. Например, ортофосфорная кислота замедляет процессы окисления железа (коррозию), поэтому ее используют для предотвращения ржавления. Часто ингибиторы используются в медицине, в лекарственных препаратах, например ингибиторы образования ферментов и др.

КЛАССИФИКАЦИЯ ПО НАПРАВЛЕНИЮ ПРОТЕКАНИЯ РЕАКЦИИ

Реакции, которые при заданных условиях протекают как в прямом, так и в обратном направлении, называют обратимыми.

При записи таких реакций вместо знака равенства используют противоположно направленные стрелки: «↔» . В этом случае может наступить состояние равновесия. Это означает, что скорость прямого процесса становится равной скорости обратного процесса. С точки зрения получения конечных продуктов — обратимость реакции является негативным явлением, поэтому часто в промышленных химических процессах приходится смещать химическое равновесие различными способами. Способы смещения химического равнвесия подробно рассматриваются в теме: «Химическое равновесие».

Обратимые реакции очень распространены в химии. К ним относятся диссоциация воды и слабых кислот, гидролиз некоторых солей, реакции водорода с бромом, иодом и азотом, многие промышленно важные реакции, такие как:

Химические реакции их классификация (Схема, Таблица)

Химическая реакция — это превращение одного или нескольких исходных веществ (реагентов) в другие вещества, при этом ядра атомов не меняются, происходит только перераспределение электронов и ядер, и образуются новые химические вещества. При химических реакциях не изменяется общее число ядер атомов и изотопный состав химических элементов (в отличие от ядерных реакций).

Классификация химических реакций схема

Химические реакции классифицируются по тепловому эффекту, по изменению степени окисления атомов в реагирующих веществах, по числу и составу исходных и образующихся веществ, и по признаку обратимости.

Читайте также  Химическая организация клетки. Органические вещества

Классификация химических реакций по числу и составу исходных и образующихся веществ

Реакция, в которой из одного исходного вещества образуется несколько новых веществ

2HgO → t → 2Hg + O2

Реакция между простым и сложным веществами, в результате которой атомы простого вещества замещают атомы одного из элементов сложного вещества

Реакция, в результате которой два вещества обмениваются своими составными частями, образуя два новых вещества

NaOH + HCl → NaCl + H2O

Реакция, в результате которой из двух или нескольких веществ образуется одно новое

Классификация химических реакций по тепловому эффекту

Тепловой эффект химической реакции — это количество теплоты (Q), которое выделяется или поглощается в химической реакции.

Реакция, проходящая с поглощением теплоты

Реакция, проходящая с выделением теплоты

Термохимическое уравнение — уравнение химической реакции, в котором указан тепловой эффект реакции:

Термохимические расчеты основаны на законе Гесса:

— тепловой эффект химической реакции зависит от состояний исходных веществ и продуктов реакций, но не зависит от промежуточных стадий процесса

— тепловой эффект химической реакции равен сумме теплот образования продуктов реакции эа вычетом суммы теплот образования исходных веществ

Классификация химических реакций по признаку обратимости

Такая реакция, которая в данных условиях протекает одновременно в двух взаимно противоположных направлениях

Такая реакция, которая в данных условиях протекает до конца, т. е. до полного превращения исходных реагирующих веществ в конечные продукты реакции

Таблица признаки необратимости реакций

Реакция идет с выделением большого количества теплоты

2Mg + O2 → 2MgO + Q

Хотя бы один продукт реакции покидает сферу реакции (выпадает в осадок или выделяется в виде газа)

В результате реакции образуются малодиссоциируе-мые вещества

HCl + NaOH → NaCl + H2O

Классификация химических реакций по изменению степени окисления

Проходящая с изменением степени окисления атомов (окислительно-восстановительная)

реакция, при которой происходит переход электронов от одних атомов, молекул или ионов к другим

— 2KI -1 + Сl 2 0 → 2КСl -1 + I 2 0

Проходящая без изменения степени окисления

Реакция, в которой степень окисления каждого атома после реакции остается неизменной

Влияние изменения условий на положение химического равновесия

Изменение условий, при которых система находится в состоянии химического равновесия

Изменение скоростей прямой и обратной реакции в начальный момент

Направление смешения положения равновесия

В большей степени возрастает скорость эндотермической реакции

В сторону эндотермической реакции

В большей степени понижается скорость эндотермической реакции

В сторону экзотермической реакции

В большей степени возрастает скорость реакции, протекающей с уменьшением числа молей газообразных веществ

В сторону уменьшения числа молей газообразных веществ в системе

В большей степени понижается скорость реакции протекающей с уменьшением числа молей газообразных веществ

В сторону увеличения числа молей газообразных веществ в системе

Возрастает скорость реакции, по которой вводимое вещество расходуется

В сторону реакции, по которой вводимое вещество расходуется

Уменьшается скорость реакции, где реагентом является вещество, концентрация которого уменьшается

В сторону реакции, по которой образуется вещество, концентрация которого уменьшается

Скорости прямой и обратной реакции изменяются одинаково

Классификация химических реакций в неорганической и органической химии

Теория к заданию 19 из ЕГЭ по химии

Классификация химических реакций в неорганической и органической химии

Химические реакции, или химические явления, — это процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и (или) строению.

При химических реакциях обязательно происходит изменение веществ, при котором рвутся старые и образуются новые связи между атомами.

Химические реакции следует отличать от ядерных реакций. В результате химической реакции общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции — процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например, превращение алюминия в магний:

Классификация химических реакций многопланова, т.е. в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.

Рассмотрим классификацию химических реакций по различным признакам.

Классификация химических реакций по числу и составу реагирующих веществ. Реакции, идущие без изменения состава вещества

В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:

В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:

1. Изомеризация алканов.

Реакция изомеризации алканов имеет большое практическое значение, т.к. углеводороды изостроения обладают меньшей способностью к детонации.

2. Изомеризация алкенов.

3. Изомеризация алкинов (реакция А. Е. Фаворского).

4. Изомеризация галогеналканов (А. Е. Фаворский).

5. Изомеризация цианата аммония при нагревании.

Впервые мочевина была синтезирована Ф. Велером в 1882 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.

1. Реакции соединения — это такие реакции, при которых из двух и более веществ образуется одно сложное вещество.

В неорганической химии все многообразие реакций соединения можно рассмотреть на примере реакций получения серной кислоты из серы:

1) получение оксида серы (IV):

$S+O_2=SO_2$ — из двух простых веществ образуется одно сложное;

2) получение оксида серы (VI):

$2SO_2+O_2<⇄>↖2SO_3$ — из простого и сложного веществ образуется одно сложное;

3) получение серной кислоты:

$SO_3+H_2O=H_2SO_4$ — из двух сложных веществ образуется одно сложное.

Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:

В органической химии реакции соединения принято называть реакциями присоединения. Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:

1) реакция гидрирования — присоединение водорода:

2) реакция гидратации — присоединение воды:

3) реакция полимеризации:

2. Реакции разложения — это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.

В неорганической химии все многообразие таких реакций можно рассмотреть на примере блока реакций получения кислорода лабораторными способами:

1) разложение оксида ртути (II):

$2HgO<→>↖2Hg+O_2↑$ — из одного сложного вещества образуются два простых;

2) разложение нитрата калия:

$2KNO_3<→>↖2KNO_2+O_2↑$ — из одного сложного вещества образуются одно простое и одно сложное;

3) разложение перманганата калия:

$2KMnO_4<→>↖K_2MnO_4+MnO_2+O_2↑$ — из одного сложного вещества образуются два сложных и одно простое, т.е. три новых вещества.

В органической химии реакции разложения можно рассмотреть на примере блока реакций получения этилена в лаборатории и промышленности:

1) реакция дегидратации (отщепления воды) этанола:

2) реакция дегидрирования (отщепления водорода) этана:

3) реакция крекинга (расщепления) пропана:

3. Реакции замещения — это такие реакции, в результате которых атомы простого вещества замещают атомы какого-либо элемента в сложном веществе.

В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:

1) взаимодействие щелочных и щелочноземельных металлов с водой:

2) взаимодействие металлов с кислотами в растворе:

3) взаимодействие металлов с солями в растворе:

Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, — способность его атомов водорода замещаться на атомы галогена:

Читайте также  Значение химии в создании новых материалов, красителей и волокон

Другой пример — бромирование ароматического соединения (бензола, толуола, анилина):

Обратим внимание на особенность реакций замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещества, как в неорганической химии, а два сложных вещества.

В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например, нитрование бензола:

Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.

4. Реакции обмена — это такие реакции, при которых два сложных вещества обмениваются своими составными частями.

Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, т.е. только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, $Н_2О$).

В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:

1) реакция нейтрализации, идущая с образованием соли и воды:

или в ионном виде:

2) реакция между щелочью и солью, идущая с образованием газа:

или в ионном виде:

3) реакция между щелочью и солью, идущая с образованием осадка:

или в ионном виде:

В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:

1) реакция, идущая с образованием слабого электролита — $H_2O$:

2) реакция, идущая с образованием газа:

3) реакция, идущая с образованием осадка:

Классификация химических реакций по изменению степеней окисления химических элементов, образующих вещества

Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

Как вы помните, сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса:

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов:

1. Альдегиды восстанавливаются в соответствующие спирты:

2. Альдегиды окисляются в соответствующие кислоты:

Реакции, идущие без изменения степеней окисления химических элементов.

К ним, например, относятся все реакции ионного обмена, а также:

  • многие реакции соединения:
  • многие реакции разложения:
  • реакции этерификации:

Классификация химических реакций по тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.

Экзотермические реакции.

Эти реакции протекают с выделением энергии.

К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота (II) из азота и кислорода и реакция газообразного водорода с твердым иодом:

Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения, например:

Гидрирование этилена — пример экзотермической реакции:

Она идет при комнатной температуре.

Эндотермические реакции

Эти реакции протекают с поглощением энергии.

Очевидно, что к ним относятся почти все реакции разложения, например:

а) обжиг известняка:

б) крекинг бутана:

Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением, например:

Классификация химических реакций по агрегатному состоянию реагирующих веществ (фазовому составу)

Гетерогенные реакции.

Это реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах):

Гомогенные реакции.

Это реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе):

Классификация химических реакций по участию катализатора

Некаталитические реакции.

Некаталитические реакции идут без участия катализатора:

Каталитические реакции.

Каталитические реакции идут с участием катализатора:

Так как все биологические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы — ферментов, все они относятся к каталитическим или, точнее, ферментативным.

Следует отметить, что более $70%$ химических производств используют катализаторы.

Классификация химических реакций по направлению

Необратимые реакции.

Необратимые реакции протекают в данных условиях только в од ном направлении.

К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды), и все реакции горения.

Обратимые реакции.

Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях.

Таких реакций подавляющее большинство.

В органической химии признак обратимости отражают названия-антонимы процессов:

  • гедрирование — дегидрирование;
  • гидратация — дегидратация;
  • полимеризация — деполимеризация.

Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость лежит в основе важнейшего процесса в живом организме — обмена веществ.

1.4.1 Классификация химических реакций в неорганической и органической химии

Видеоурок: Типы химических реакций

Лекция: Классификация химических реакций в неорганической и органической химии

Виды химических реакций в неорганической химии

А) Классификация по количеству начальных веществ:

Разложение – вследствие данной реакции, из одного имеющегося сложного вещества, образуются два или несколько простых, а так же сложных веществ.

Соединение – это такая реакция, при которой из двух и более простых, а также сложных веществ, образуется одно, но более сложное.

Замещение – это определенная химическая реакция, которая проходит между некоторыми простыми, а так же сложными веществами. Атомы простого вещества, в данной реакции, замещаются на атомы одного из элементов, находящегося в сложном веществе.

Пример: 2КI + Cl2 → 2КCl + I2

Обмен – это такая реакция, при которой два сложных по строению вещества обмениваются своими частями.

Пример: HCl + KNO2 → KCl + HNO2

Б) Классификация по тепловому эффекту:

Экзотермические реакции – это определенные химические реакции, при которых происходит выделение тепла.
Примеры:

Эндотермические реакции – это определенные химические реакции, при которых происходит поглощение тепла. Как правило, это реакции разложения.

В) Классификация по обратимости:

Обратимые реакции – это реакции, которые протекают при одинаковых условиях во взаимопротивоположных направлениях.

Необратимые реакции – это реакции, которые протекают только в одном направлении, а так же завершающиеся полным расходом всех исходных веществ. При этих реакциях выделяе тся газ, осадок, вода.
Пример: 2KClO3 → 2KCl + 3O2

Г) Классификация по изменению степени окисления:

Окислительно — восстановительные реакции – в процессе данных реакций происходит изменение степени окисления.

Не окислительно — восстановительные – реакции без изменения степени окисления.

Д) Классификация по фазе:

Гомогенные реакции – реакции, протекающие в одной фазе, когда исходные вещества и продукты реакции имеют одно агрегатное состояние.

Гетерогенные реакции – реакции, протекающие на поверхности раздела фаз, при которых продукты реакции и исходные вещества имеют разное агрегатное состояние.
Пример: CuO+ H2 → Cu+H2O

Классификация по использованию катализатора:

Катализатор – вещество, которое ускоряет реакцию. Каталитическая реакция протекает в присутствии катализатора, некаталитическая – без катализатора.
Пример: 2H22 MnO2 → 2H2O + O2 катализатор MnO2

Взаимодействие щелочи с кислотой протекает без катализатора.
Пример: КOH + HCl → КCl + H2O

Ингибиторы – вещества, замедляющие реакцию.
Катализаторы и ингибиторы сами в ходе реакции не расходуются.

Виды химических реакций в органической химии

Замещение – это реакция, в процессе которой происходит замена одного атома/группы атомов, в исходной молекуле, на иные атомы/группы атомов.
Пример: СН4 + Сl2 → СН3Сl + НСl

Присоединение – это реакции, при которых несколько молекул вещества соединяются в одну. К реакциям присоединения относятся:

  • Гидрирование – реакция, в процессе которой происходит присоединение водорода по кратной связи.
Читайте также  Метод моделирования в химии

Гидрогалогенирование – реакция, присоединяющая галогенводород.

Алкины реагируют с галогеноводородами (хлороводородом, бромоводородом) так же, как и алкены. Присоединение в химической реакции проходит в 2 стадии, и определяется правилом Марковникова:

При присоединении протонных кислот и воды к несимметричным алкенам и алкинам атом водорода присоединяется к наиболее гидрогенизированному атому углерода.

Механизм данной химической реакции. Образующийся в 1 — ой, быстрой стадии, p- комплекс во 2 — ой медленной стадии постепенно превращается в s-комплекс — карбокатион. В 3 — ей стадии происходит стабилизация карбокатиона – то есть взаимодействие с анионом брома:

И1, И2 — карбокатионы. П1, П2 — бромиды.

Галогенирование – реакция, при которой присоединяется галоген. Галогенированием так же, называют все процессы, в результате которых в органические соединения вводятся атомы галогена. Данное понятие употребляется в «широком смысле». В соответствии с данным понятием, различают следующие химические реакции на основе галогенирования: фторирование, хлорирование, бромирование, йодирование.

Галогенсодержащие органические производные считаются важнейшими соединениями, которые применяются как в органическом синтезе, так и в качестве целевых продуктов. Галогенпроизводные углеводородов, считаются исходными продуктами в большом количестве реакций нуклеофильного замещения. Что касается практического использования соединений, содержащих галоген, то они применяются в виде растворителей, например хлорсодержащие соединения, холодильных агентов — хлорфторпроизводные, фреоны, пестицидов, фармацевтических препаратов, пластификаторов, мономеров для получения пластмасс.

Гидратация – реакции присоединения молекулы воды по кратной связи.

Полимеризация – это особый вид реакции, при которой молекулы вещества, имеющие относительную невеликую молекулярную массу, присоединяются друг к другу, впоследствии образовывая молекулы вещества с высокой молекулярной массой.

Классификация химических реакций

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения. В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

NaOH + HCl = NaCl + H2O (2)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

2Mg + O2 = 2MgO + 602, 5 кДж (2)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

Примерами необратимых реакций может служить следующие реакции:

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF2 + H2O, где Ме – металл.

Примеры решения задач

б) не является ОВР;

Fe 2+ — e → Fe 3+ (восстановитель) 2O 0 + 2e → O 2- (окислитель)

г) не является ОВР.

Необратимая реакция, т.к. образуется осадок – хлорид серебра

Необратимая реакция, т.к. образуется осадок – сульфат бария

Необратимая реакция, т.к. выделяется газ – оксид серы (VI)

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: