Особенности биологии ХХ века - ABCD42.RU

Особенности биологии ХХ века

Величайшие достижения в биологии и медицине прошлого столетия

Виват отважные и жаждущие знаний! Сегодня мой веб-лайнер совершит для вас экскурсию по теме: самые важные открытия в биологии и медицине сделанные в 20-м веке. Вы узнаете о тех величайших достижениях учёных, которые помогли значительно улучшить здоровье, а также увеличить продолжительность нашей жизни. В путь друзья!

  1. Предисловие
  2. Создание антибиотиков
  3. Появление рентгена и эндоскопа
  4. Трансплантация органов
  5. Пейсмейкер
  6. Контрацепция и первое искусственное оплодотворение
  7. Открытие ДНК
  8. Психология: Фрейд Юнг и Павлов

Предисловие

Открытия в области биологии, сделанные на протяжении 20 века, позволили существенно помочь в развитии всего человечества. Мы узнали много нового о значении витаминов и минеральных веществ, содержащихся в нашей пище.

Также была открыта роль различных химических соединений для нашего организма. К примеру таких, как гормоны. Кроме того, применение химических удобрений позволило резко повысить урожайность сельскохозяйственных культур.

Создание антибиотиков

Одним из немаловажных достижений медицины 20 века стало создание антибиотиков. Это особые лекарства, способные противостоять инфекциям бактериального происхождения.

В 1928 г английский учёный Александр Флеминг первым из медиков обратил внимание на то, что пенициллиновая культура может успешно предотвращать распространение бактерий.

А уже в 1941 г двое других учёных-химиков, Генри Флори и Эрнст Чейн, сумели выделить из неё активный компонент. Тем самым они первыми стали использовать очищенный пенициллин в качестве антибиотика.

Он тут же нашёл широкое применение во время Второй мировой войны при лечении раненых. А в наши дни его применяют для лечения самых разнообразных заболеваний.

Появление рентгена и эндоскопа

Рентгеновские лучи (особые волны энергии, способные проходить сквозь тело человека) были открыты в 1895 г немецким учёным Вильгельмом Рентгеном.

Они позволили врачам впервые заглянуть внутрь организма своих пациентов. Это значительно облегчило постановку точного диагноза и, соответственно, последующее лечение болезней.

В 1955 г были изобретены оптические волокна, или световоды, гибкие стеклянные нити, пропускающие свет. На основе волоконной оптики был создан эндоскоп.

Он представлял из себя что-то вроде гибкой оптической трубы, с помощью которой можно изучать внутренние органы тела.

Трансплантация органов

Огромный прогресс был достигнут и в хирургии. Лечение почти всех органов человека претерпело самые радикальные изменения.

Новые лекарства, появившиеся в начале столетия, позволили врачам гораздо эффективнее контролировать болевые ощущения и сознание своих пациентов.

Другим выдающимся достижением медицины 20 в является трансплантация органов и их искусственное создание. Начиная с 40-х гг стали применяться гемодиализаторы — аппараты, выполняющие функцию здоровой человеческой почки.

В 1950-е гг медицина сделала ещё один шаг вперёд. Была осуществлена первая успешная пересадка почки.

Пейсмейкер

В то же время первая операция по пересадке человеческого сердца была проведена лишь в 1967 г. За последующие два десятилетия новое сердце было пересажено большому количеству пациентов, но многие из них умерли, поскольку их организм отторгал чужеродный орган.

Проблема отторжения окончательно не преодолена и по сей день. Однако сейчас процент успешных операций такого рода стал заметно выше. Альтернативой трансплантации сердца служит так называемый «пейсмейкер», изобретённый в 1958 году.

Это устройство помещается внутрь тела и стимулирует слабое сердце посредством электрических микроимпульсов.

Контрацепция и первое искусственное оплодотворение

В 20 веке были изобретены новые, более эффективные способы контрацепции. Наиболее надёжными из них являются оральные контрацептивы в виде пилюль, появившиеся в 60-е годы.

Эти средства значительно облегчили женскую участь. Однако в дальнейшем к ним стали относиться более настороженно. Дело в том, что у них были обнаружены некоторые побочные эффекты.

Значительные успехи были достигнуты и в области борьбы с женским бесплодием. В 1978 г было осуществлено первое искусственное оплодотворение

При этом женская яйцеклетка оплодотворяется в пробирке. Поэтому дети, рождённые с помощью этой технологии, стали называться «пробирочными».

Открытие ДНК

Сам термин «ген» был изобретён в 1909 году. Им обозначался фактор наследственности, определяющий, какие черты и свойства характера будут унаследованы животным или растением.

Впоследствии учёным удалось выделить химическое вещество ДНК , служащее ключом к генетическому коду организма.

При этом, структура вещества по-прежнему оставалась загадкой

После 1945 г исследования в области ДНК начали проводиться в Великобритании сразу несколькими учёными. Ими были Фрэнсис Крик, Розалинд Франклин, Джеймс Уотсон и Морис Уилкинс.

Следствием их работы стало открытие в 1953 г структуры дезоксирибонуклеиновой кислоты. Крик и Уотсон построили пространственную модель сложнейшей молекулы ДНК в виде двух переплетающихся цепочек химических соединений.

В отдельных точках они были соединены между собой посредством химических связок

Такая форма стала называться двойной спиралью

Это открытие проложило дорогу генной инженерии. По другому, технологии изменения свойств организма путём трансформации его генетического кода. Генная инженерия позволила синтезировать такое органическое вещество, как человеческий инсулин. Его изобретение позволило эффективно лечить диабет.

Психология: Фрейд Юнг и Павлов

Психология как наука вплоть до 20 века была развита очень слабо. Австрийский учёный Зигмунд Фрейд (1856—1961) изобрёл особый метод извлечения из памяти своих пациентов скрытых там ассоциативных связей.

Позже данный метод получил название психоанализа

Цель его состояла в том, чтобы понять причины возникновения у больного тех или иных проблем, связанных с мышлением или физической деятельностью. Фрейд считал, что человеческое мышление включает в себя различные уровни понимания происходящего.

Один из учеников Фрейда, Карл Юнг (1875—1961), посвятил себя изучению снов, что привело его к созданию теории «коллективного бессознательного». Он пришёл к выводу, что в памяти каждого человека хранится опыт, накопленный прежними поколениями, который обнаруживает себя в его снах.

Русский учёный Иван Павлов длительное время изучал поведение собак и в итоге пришёл к выводу, что как животных так и людей можно приучить инстинктивно реагировать на тот или иной внешний раздражитель.

Он назвал это выработкой условного рефлекса

Вот такими величайшими открытиями в пользу всего человечества порадовало нас прошлое столетие. Мы же можем только познавать новое и освежать в памяти давно прочитанное))

Благодарю всех за участие и непременно жду в следующих путешествиях. Помните, билеты на все новые приключения ждут вас в кассе «подписаться».

До скорой встречи друзья!

P.S. Низкий поклон замечательному издательству «РОСМЭН» за возможность подготовить для читателя вышеизложенные материалы

Подпишитесь, чтобы вовремя узнавать о важных новостях!

Основные этапы развития биологии в XX веке

Современная биологическая картина мира

В XX в. биология постепенно становится лидером естествознания.

Классификация биологических наук

По объектам исследования выделяют: зоология, ботаника, анатомия и физиология человека, каждое направление также разделилось на ряд дисциплин. Например, зоология: протозоология, энтомология, орнитология и т.д.; Ботаника: альгология, бриология, дендрология и т.д. В самостоятельные науки выделились микология, лихенология, вирусология.

Многообразие организмов изучает систематика животных и растений; прошлую историю органического мира – палеонтология.

По исследуемым свойствам: морфологические дисциплины – цитология, гистология, анатомия. Состав и ультраструктура тканей и клеток – биохимия, биофизика, молекулярная биология. Образ жизни животных и их распространение – биогеография, гидробиология, биогеоценология. Функции организмов изучают физиология животных и физиология растений. Закономерности поведения животных – этология, закономерности наследственности и изменчивости – генетика, закономерности индивидуального развития – биология развития, историческое развитие органического мира – эволюционное учение.

1. Переоткрытие законов Менделя. Вступление в XX в. ознаменовалось в биологии бурным развитием генетики. Важнейшим исходным событием явилось новое открытие законов Менделя. В 1900 г. законы Менделя были переоткрыты независимо сразу тремя учеными — Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии.

1) Закон единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся по альтернативным вариантам одного и того же признака, все потомство от такого скрещивания окажется единообразным и будет нести признак одного из родителей. Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны — Аа), а значит и по фенотипу.

2) Закон расщепления: при скрещивании гибридов первого поколения между собой среди гибридов второго поколения наблюдается расщепление признака в определенном соотношении: по фенотипу 3:1, по генотипу 1.

Закон чистоты гамет. Появление во втором поколении рецессивного признака одного из родителей может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде, 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из каждой аллельной пары.

3) Закон независимого комбинирования признаков: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

При дигибридном скрещивании двух двух дигеторозигот между собой, во втором поколении гибридов будет наблюдаться расщепление признаков по фенотипу в соотношении 9:3:3:1.

Далее последовала лавина эмпирических открытий: открытие дискретного характера наследственности; обоснование представления о гене и хромосомах как носителях генов, представление о линейном расположении генов; доказательство существования мутаций и возможность вызывать их искусственно и т.д.

2) Создание хромосомной теории наследственности, в которой были обобщены теоретические аспекты генетики. Хромосомная теория наследственности была разработанна в 1910—1915 гг. в трудах А. Вейсмана, Т. Моргана, А. Стертеванта, Г.Дж. Меллера и др. Ее основные положения:

1) гены находятся в хромосомах;

2) гены в хромосомах расположены линейно, друг за другом и не перекрываются;

3) гены, расположенные в одной хромосоме, называются сцепленными и составляют группу сцепления.

4) Закон Моргана: гены, расположенные в одной хромосоме, наследуются совместно.

Наследственность – передача наследственной информации от одного поколения другому. Изменчивость – это способность живых организмов приобретать новые признаки и свойства. Изменчивость отражает взаимосвязь организма с окружающей средой. Различают:

— наследственная (генотипическая) изменчивость обусловлена возникновением новых генотипов и приводит, как правило, к изменению фенотипа.

— ненаследственная (модификационная) изменчивость отражает изменения фенотипа под действием условий существования организма, не затрагивающих генотип.

— онтогенетическая изменчивость отражает реализацию закономерных изменений в ходе индивидуального развития организма.

Наследственные изменения генетического материала называют мутациями. Свойства мутаций:

— мутации возникают внезапно, скачкообразно,

— мутации наследственны, т.е. стойко передаются из поколения в поколение.

— мутации ненаправленны – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков,

— одни и те же мутации могут возникать повторно,

— по своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

3) Антидарвинизм. Первые 30 лет XX в. прошли под знаком борьбы представителей различных концепций наследственности, выступающих против эволюционной теории Дарвина.

Антидарвинизм – совокупность различных концепций, отрицающих ведущую роль естественного отбора в эволюции органического мира. Основные течения антидарвинизма сложились во второй половине 19 – начале 20 века. К ним относятся различные формы неоламаркизма, батмогенез, ортогенез, неокатастрофизм, телеогенез и др. Современные антидарвинистические концепции обычно претендуют на решение проблемы макроэволюции, недоступной для экспериментальной проверки, как правило, являются разновидностями автогенеза.

Автогенез – идеалистическая концепция в эволюционном учении, рассматривающая эволюцию как процесс развертывания предшествующих задатков, носящий целенаправленный характер и происходящий на основе изначальных внутренних потенциальных возможностей. Автогенетический характер носят учения о градациях Ламарка, аристогенез Осборна, батмогенез Копа, ортогенез Эймера, номогенез Берга и др.

Аристогенез – эволюционная концепция Осборна (1931-34), согласно которой прогрессивная эволюция осуществляется в результате возникновения и накопления особых «генов улучшения» — аристогенов. Осборн предполагал, что изменения, обусловленные аристогенами, незначительны и бесполезны при своем возникновении. Однако постепенно накапливаясь и усиливаясь под влиянием различных факторов, они ведут к возникновению нового приспособления под действием естественного отбора. Аристогенез – разновидность неоламаркизма.

Батмогенез – идеалистическая эволюционная концепция Копа (1871), согласно которой в основе прогрессивного развития живых существ лежит внутреннее стремление к самосовершенствованию – сила роста, или батмизм. Концепция батмизма исходит из того, что развитие низших организмов происходит под влиянием физико-химических факторов среды, а у более высокоразвитых организмов главное значение приобретает употребление или неупотребление органов. Коп считал, что с появлением разума эволюционные преобразования осуществляются путем сознательного выбора. Именно сознательный выбор на основе присущей, согласно батмизму, всему живому силы роста создает новые адаптации организмов, а естественный отбор лишь сохраняет или уничтожает их. Эта концепция лежит в основе психоламаркизма.

Читайте также  История развития микропроцессоров

Гологенез (ологенез) – автогенетическая телеологическая концепция, согласно которой процесс онто- и филогенеза представляет собой единое целое и не зависит от внешних условий, а полностью определяется внутренними причинами. Разработана Розой в 1918. Согласно гологенезу видообразование осуществляется путем разделения исходного вида на 2 дочерних вследствие внутреннего стремления наследственной основы организмов к раздвоению. Один из видов развивается ускоренно, другой – замедленно, причем именно медленное развитие ведет к прогрессивным преобразованиям. Отбор элиминирует лишь то, что предопределено к вымиранию. В качестве причины вымирания гологенез предполагает исчерпание способности зародышевой плазмы к изменениям.

Ортогенез – концепция в эволюционном учении, утверждающая, что развитие живой природы обусловлено внутренними факторами, направляющими ход эволюции по определенному пути. Суть ортогенеза заключается в том, что направленность эволюции определяется изначальной направленностью самой изменчивости и не зависит от естественного отбора.

Телеология – идеалистическое учение об изначальной целесообразности в природе, приписывание внутренней цели развитию природы. Телеологические представления впервые высказаны Аристотелем, который носителем изначальной целесообразности считал особую нематериальную субстанцию – энтелехию. Впоследствии присутствием подобной субстанции (жизненная сила, целенаправленность) объясняли качественную специфику живого, органическую целенаправленность эволюционных преобразований (витализм, неоламаркизм и др.).

4) Создание синтетической теории эволюции, являющейся основанием современной эволюционной биологии. СТЭ – синтез генетики и эволюционного учения Дарвина.

Принципиальные положения синтетической теории эволюции были заложены работами С. С. Четверикова (1926), а также Р. Фишера, С. Райта, Дж. Холдейна, И.П. Дубинина (1929—1932) и др. Непосредственными предпосылками для синтеза генетики и теории эволюции выступали; хромосомная теория наследственности, биометрические и математические подходы к анализу эволюции, закон Харди — Вейберга для идеальной популяции (гласящий, что такая популяция стремится сохранить равновесие концентрации генов при отсутствии факторов, изменяющих его), результаты эмпирического исследования изменчивости в природных популяциях и др.

В основе этой теории лежит представление о том, что элементарной «клеточкой» эволюции является не организм и не вид, а популяция. Совокупность эволюционных процессов, протекающих в популяциях вида и приводящих к изменениям генофондов этих популяций и образованию новых видов называется микроэволюцией. Микроэволюция происходит на основе мутационной изменчивости под контролем естественного отбора.

Мутационный процесс – единственный источник резерва наследственной изменчивости популяций. Во-первых, природные популяции насыщены самыми разнообразными мутациями. Подсчитано, что 10-15 % гамет каждого организма несут те или иные мутационные аллели. Во-вторых, благодаря комбинативной изменчивости мутации могут широко распространяться в популяциях.

В разных популяциях одного вида частота мутантных генов неодинакова. Эти различия обусловлены неодинаковыми условиями внешней среды: миграция вида, природные катастрофы, популяционные волны, изоляция изменяют, закрепляют и усиливают генетические различия между популяциями. Т.о., изменения частоты генов, вызванные теми или иными факторами внешней среды, служат основой возникновения различий между генофондами популяций и в дальнейшем обуславливают преобразование их в новые виды вследствие действия естественного отбора.

Естественный отбор является ведущим эволюционным фактором, направляющим эволюционный процесс.

Формы естественного отбора:

— движущий отбор — направленный отбор, форма естественного отбора, благоприятствующая лишь одному направлению изменчивости и не благоприятствующая всем остальным ее вариантам;

— стабилизирующий отбор – форма естественного отбора, благоприятствующая сохранению в популяции оптимального в данных условиях фенотипа; наблюдается при длительном сохранении постоянных условий внешней среды;

— дизруптивный (разрывающий) отбор – форма естественного отбора, благоприятствующая нескольким направлениям изменчивости, но не благоприятствующая среднему состоянию признака.

Формирование синтетической теории эволюции ознаменовало переход к популяционной концепции, сменившей организмоцентрическую.

5) Создание молекулярной биологии. Во второй половине 40-х гг. в биологии произошло важное событие — осуществлен переход от белковой к нуклеиновой трактовке природы гена. В 1944 г. американскими биохимиками (О. Эвери и др.) было установлено, что носителем свойства наследственности является ДНК. С этого времени началось лавинообразное развитие молекулярной биологии. Последовавшие в 1949—1951 гг. исследования Э. Чаргаффа, сформулировавшего знаменитые правила, объясняющие структуры ДНК, а также рентгенографические исследования ДНК, проведенные М. Уилкинсом и др., подготовили почву для расшифровки в 1953 г. (Ф. Крик, Д. Уотсон) структуры ДНК. Расшифровка структуры ДНК стала ключом к пониманию того, что происходит в гене при передаче наследственных признаков.

Но расшифровка структуры молекулы ДНК была лишь первым шагом на пути выявления механизма наследственности и изменчивости. Далее за относительно непродолжительный срок времени были получены другие важнейшие результаты: выяснена роль РНК; расшифрован генетический код; осуществлен синтез гена; теоретически решена проблема биосинтеза белка; расшифрована аминокислотная последовательность многих белков; на этой основе выяснен принцип и особенности функционирования ферментативных молекул, химически синтезирован ряд ферментов; заложены основы генной инженерии.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Биология в контексте философии и методологии науки ХХ века

Задача науки, как известно, состоит в том, чтобы дать объяснение изучаемым явлениям. Объяснения явлений жизни при всем их разнообразии имеют двоякий характер. Эту особенность биологии Н.А. Бернштейн выразил с предельной ясностью, указав, что, изучая то или иное явление, мы должны, с одной стороны, ответить на вопрос: «Почему оно происходит?» — а, с другой стороны, также и на вопрос: «Для чего?». Объяснения первого типа принято именовать каузальными (причинными), а понимание явлений с точки зрения второго вопроса – функциональными. Так, например, при физическом утомлении имеют место: учащенное дыхание, учащение пульса, повышенное потоотделение и некоторые другие явления. Из всей совокупности явлений возьмем факт гипервентиляции легких и попытаемся ответить на вопрос, почему происходит это явление. Из физиологии известно, что накапливающаяся в организме (в крови) углекислота вызывает сильное раздражение дыхательного центра в продолговатом мозгу и это приводит к более интенсивной деятельности моторных элементов, от которых зависит вдох и выдох. Это есть причинное объяснение.

Относительно данного явления возможен и другой вопрос: «Имеет ли какой-либо смысл и значение для организма факт гипервентиляции при утомлении?». Ответ на вопрос состоит в том, что усиленная вентиляция легких обеспечивает более быстрое освобождение от углекислоты, как такого продукта метаболизма, увеличение содержания которого в организме может препятствовать нормальному функционированию и вредно влиять на некоторые его элементы.

Совершенно очевидно, что приведенные способы объяснения суть разные подходы к биологическим объектам, предполагающие оперирование понятиями и законами разных типов. Один из них не может заменить другой. Оба они необходимы для полноты понимания исследуемых явлений. Каузальный анализ необходим для разработки тактики нашей деятельности, а функциональный подход – для основного стратегического вопроса практики в таких областях, как медицина, педагогика, сельское хозяйство, ветеринария.

Биологи, выходящие за пределы частных проблем и ставящие перед собой задачи теоретических обобщений, как правило, обращали внимание на двоякий характер биологических объяснений. Можно указать на такие имена, как Г. Дриш, Э. Бюннинг, М. Гартман, Ч. Шеррингтон, К. Ротшоу, Н.А. Бернштейн, П.К. Анохин.

Л. Берталанфи и П.К. Анохин предприняли построения таких концепций, которые охватывали оба объективных момента сущности живого. Эти концепции являются оригинальными вариантами системного подхода к биологическим объектам. Однако варианты системного подхода того и другого автора различаются.

Однако сущность биологических объектов не может быть исчерпана на путях каузального и системно-структурного объяснения, если таковые не будут учитывать факт эволюции. Фундаментальной основой современного понимания мира, является принцип развития. Таким образом, в современной биологии отчетливо выявляются три типа законов – эволюционно-генетические, каузальные и системно-структурные.

В биологии Х1Х века и первых десятилетий ХХ века ведущим был эволюционный принцип. В последние десятилетия ХХ века характеризуются фундаментальным значением структурных теорий. Для биологии и медицины Х1Х века характерны разобщенность структурного и эволюционного подхода. Понимание их единства складывается постепенно, начиная с конца Х1Х века. В это время причинные законы обычно рассматривались вне эволюции и при игнорировании системной природы объектов живой природы, что неизбежно приводило или к витализму, или к механизму. В таких условиях возникновение организационной науки А.А. Богданова как общесистемной теории не было оценено, и теория Богданова была предана забвению. Однако системный подход был продолжен работами В.И. Вернадского и Э.С. Бауэра. Бауэр видел специфическую особенность живых систем в их устойчивой неравновесности.

Установление точных системных закономерностей большую роль сыграла организмическая концепция Л. Берталанфи. Стремясь понять исторические перспективы развития биологии, Л. Берталанфи не без основания приходит к выводу, что «организмическое воззрение является предпосылкой для перехода биологии со стадии, которую можно было бы назвать естественной историей, т.е. со стадии описания форм и явлений, на стадию науки законов». (L. von Bertalanffy. Das biologische Weltbild. Bd. 1. Bern, 1949, S. 32-33).

Переход к системным концепциям, по определению Л. Берталанфи, — это тот «коперниканский переворот» в биологии, подобный развитию физических представлений от аристотелевской системы мира к физике нового времени, который предстоит проделать и осуществление которого есть задача нашего времени. Для современной биологии характерны три взаимосвязанных способа объяснения, базирующихся на каузальном, системно-структурном и эволюционно-генетических принципах.

Переход к системным концепциям в биологии развивался параллельно с развитием таких же подходов в физике. «Новая эра, — говорит М. Борн, — со своим новым стилем началась в 1900 году, когда Планк обнародовал свою формулу излучения и идею квантов энергии… Вместе с квантами пришли новые взгляды на проблему противоположности субъекта и объекта. Они не являются ни совсем субъективистскими, как древние и средневековые учения, ни полностью объективистскими, как посленьютоновская философия». (Борн М. Физика в жизни моего поколения. М., 1965. С. 230). Новый стиль мышления основывался на соотношении неопределенностей Гейзенберга, принципе дополнительности Бора и принципе ограниченности представлений. В ходе развития науки для целей теоретического освоения реальности создаются такие простые образы, как частица, волна, точка, строгая локализация в пространстве. Они представляют собой абстракции, идеализации, лишь приблизительно соответствующие действительному положению вещей, их применение допустимо только в определенных пределах. Новый стиль мышления, по сути дела, есть уразумение того, что познание природы есть субъективное отображение реальности, которое постоянно изменяется и развивается.

Из биологических проблем вытекали те же самые следствия относительно нашего понимания природы человеческого познания. В этом отношении характерен доклад К.Х. Уоддингтона на Сербеллонианском симпозиуме. Уоддингтон справедливо утверждает, что биология в состоянии помочь найти истинное понимание природы человеческого знания. Его мысль состоит в том, что наши наиболее значительные научные достижения во всех областях относительно независимы от наших сенсорных возможностей. Представления об атомной структуре вещества, электромагнитном поле, вся классическая физика, квантовая механика и теория относительности могли бы быть созданы и дальтониками. Однако эти теории имеют не только объяснительную функцию, они являются также и основой техники, на которой зиждется современная цивилизация. Уоддингтон делает вывод: «Содержание наших знаний о мире определяется скорее нашими реакциями на него, чем приобретенным опытом». (На пути к теоретической биологии. М., 1970. С. 32). Уоддингтон высказывает глубокую мысль, что характер наших знаний, степень их детализации и то, какая часть реальности, и с какой именно стороны отражается в наших знаниях, — все это зависит от двух обстоятельств: от устройства органа познания и всей системы организма и от тех целей, которые возникают в ходе жизни индивида. В таком случае познание есть жизненная функция, необходимый элемент жизнедеятельности, а развитие познания есть один из аспектов эволюции жизни. Субъективность познания состоит в том, что, отображая реальность, наше познание выражает целеустремленность и активность субъекта, живого существа, и потому оно неизбежно ограничено.

Такой подход представляет собой критику редукционистски ориентированной философии науки логического эмпиризма. Логический эмпиризм абсолютизирует эмпирическое познание, которое начинается с ощущений, которые в своем синтезе дают наглядно-чувственные образы отдельных вещей и ситуаций. Относительная стабильность этих форм знания обусловливают наше особое доверие к показаниям органов чувств, порождая убежденность в объективной истинности ощущений, восприятий и представлений. Эта убежденность, названная Д. Юмом животной верой, является непоколебимой, ничем неистребимой именно потому, что наши ощущения, восприятии и представления, если они верны, обеспечивают нашу ориентировку в окружающей среде и тем самым делают возможной нашу каждодневную жизнь. То же самое можно сказать и о первичных обобщениях нашего чувственного опыта в эмпирических понятиях. Это с точки зрения здравого рассудка и позитивистского эмпиризма наиболее истинное знание. Что же касается теоретического знания, то оно в силу его большей удаленности от реальности рассматривается как менее истинное или даже трактуется лишь как система формальных абстрактных построений для целей упорядочивания единственно возможной реальности, т.е. чувственного опыта.

Читайте также  История развития бухгалтерского учета за рубежом

Однако теоретические знания о структуре, кажущиеся субъективным, формальным построением, на самом деле в значительно большей мере выражают объективную природу вещей, чем наглядные картины их строения и восприятия их свойств.

Презентация по биологии на тему «Великие открытия XX века в области биологии»

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

Описание презентации по отдельным слайдам:

Великие открытия XX века в области биологии Автор: Губарева Елена Валериевна учитель биологии, географии МБОУ ЦО №5 г. Тулы

План презентации Цель и задачи Выращивание и сохранение клеток вне организма Выделение чистого фермента Открытие стволовых клеток Значение стволовых клеток Использование стволовых клеток Значение открытия стволовых клеток Секвенирование ДНК Всемирный проект «Геном человека» Болезни, возникающие в результате повреждения генов Клонирование Уникальность овечки Долли Выводы Используемые информационные источники

Цель: изучить важнейшие открытия XX века в области биологии, повлиявшие на жизнь людей. Задачи: узнать об открытиях XX века в области биологии; определить значение данных открытий.

В 1907 году Росс Харрисон взял ткани эмбриона лягушки и смог вырастить на их основе новые нервные волокна, которые затем сохранял живыми в течение месяца. Выращивание и сохранение клеток вне организма Сегодня клеточные образцы можно поддерживать живыми почти бесконечно — ученые до сих пор экспериментируют с клеточными тканями женщины, которая умерла 50 лет назад.

Выделение чистого фермента Некоторые из его коллег сомневались в результатах годами, но в итоге и им пришлось сдаться. Работа Самнера принесла ему Нобелевскую премию в 1946 году. В 1926 году американский химик Джеймс Батчлер Самнер выделил уреазу, фермент, который расщепляет мочевину на химические компоненты.

Открытие стволовых клеток Стволовые клетки — это та основа, из которой развивается весь организм. Так, зародыш целиком состоит из стволовых клеток, которые начинают постепенно дифференцироваться в клетки будущих органов и тканей. Во взрослом организме стволовых клеток гораздо меньше, чем в новорожденном.

Значение стволовых клеток В случае повреждения какого-нибудь органа стволовые клетки направляются к очагу бедствия и превращаются в клетки больного органа, способствуя его восстановлению. Именно это свойство стволовых клеток легло в основу разработки методов их применения в терапевтических целях.

Использование стволовых клеток Краткая хронология событий: 1970 год — Первые трансплантации аутологичных (своих собственных) стволовых клеток. Есть сведения, что в 70-х годах в бывшем СССР делали «прививки молодости» пожилым членам Политбюро КПСС, вводя им 2-3 раза в год препараты стволовых клеток. 1988 год — Стволовые клетки были впервые использованы для трансплантации; мальчик, которому была проведена операция, по сей день, жив и здоров. 1992 год — Первая именная коллекция стволовых клеток. Профессор Дэвид Харрис «на всякий случай» заморозил стволовые клетки пуповинной крови своего первенца. Сегодня Дэвид Харрис – директор крупнейшего в мире банка стволовых клеток пуповинной крови. 1996 год — За период с 1996 года по 2004 год были выполнены 392 трансплантации аутологичных (собственных стволовых клеток человека) стволовых клеток. Так в 1996 году преимущественно осуществлялась трансплантация костного мозга. 1998 год — Первая в мире трансплантация «именных» стволовых клеток пуповинной крови девочке с нейробластомой (опухоль мозга). Биологическая страховка сработала – ребенок спасен. Общее число проведенных трансплантаций пуповинной крови превышает 600. 1999 год — Журнал «Science» признал открытие эмбриональных стволовых клеток третьим по значимости событием в биологии после расшифровки двойной спирали ДНК и программы «Геном человека».

Значение открытия стволовых клеток На данный момент перечень заболеваний, при лечении которых может быть успешно применена трансплантация стволовых клеток, достигает нескольких десятков. Основное внимание уделяется лечению злокачественных новообразований, различных форм лейкозов и других болезней крови. Появляются сообщения об успешной трансплантации стволовых клеток при заболеваниях сердечно-сосудистой и нервной систем. Разработаны международные протоколы лечения рассеянного склероза. Проводятся многоцентровые исследования при лечении инфаркта миокарда и сердечной недостаточности. Ищутся подходы к лечению инсульта, болезни Паркинсона и Альцгеймера.

Секвенирование ДНК Британский ученый Фредерик Сэнгер вместе с американским биохимиком Уолтером Гилбертом в 1977 году опубликовали метод, который позволяет выяснить последовательность строительных блоков в цепи ДНК.

Всемирный проект «Геном человека» В 1988 году Национальный институт здоровья США начал проект «Геном человека», возглавил который нобелевский лауреат Джеймс Уотсон. Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию

Болезни повреждения генов 1. Хpoнический грануломатоз 2. Кистозный фиброз 3. Болезнь Вильсона 4. Ранний рак груди/яичника 5. Мышечная дистрофия Эмери-Дрейфуса 6. Атрофия мышц позвоночника 7. Альбинизм глаза 8. Болезнь Альцгеймера 9. Наследственный паралич 10. Дистония Вероятно, в ближайшие годы станет возможной сверхранняя диагностика тяжелых заболеваний, а значит, и более успешная борьба с ними.

Клонирование 5 июля 1996 года родилась овечка Долли — первое млекопитающее, клонированное благодаря переносу ядра. Долли прожила с 1996 по 2003 год. Ее клонированием занимались Ян Вилмут и Кейт Кэмпбелл из Эдинбурга, (Шотландия) в Рослинском институте.

Уникальность овечки Долли Овечка Долли уникальна еще и тем, что у нее сразу три «мамы» и ни одного «папы». От одной самки была получена неоплодотворенная яйцеклетка, из которой впоследствии изъяли ядро, где находится генетическая информация. У другой взяли клетку молочной железы (которая является соматической, а не половой) и также извлекли ядро. Соединив его с яйцеклеткой, эмбриологи подсадили получившуюся клетку суррогатной матери.

Выводы Один из старинных девизов гласит: “знание есть сила”. Наука делает человека могущественным перед силами природы. Великие научные открытия (и тесно связанные с ними технические изобретения) всегда оказывали колоссальное (и подчас совершенно неожиданное) воздействие на судьбы человеческой истории. Ученые не останавливаются на достигнутом и дальше будут удивлять нас своими открытиями.

Особенности биологии ХХ века (стр. 1 из 2)

1. Век генетики

1.1. Хромосомная теория наследственности.

Вступление в ХХ в. ознаменовалось в биологии бурным развитием генетики. Важнейшим исходным событием здесь явилось новое открытие законов Менделя. В 1900 г. законы Менделя были переоткрыты независимо сразу тремя учеными – Г. де Фризом, К. Корренсом и К. Чермаком. Второй период ознаменовался лавиной эмпирических открытий и построением различных теоретических моделей. За относительно короткий срок (30 – 40 лет) в учении о наследственности был накоплен колоссальный эмпирический и теоретический материал.

Начало ХХ в. принято считать началом экспериментальной генетики, определившей интенсивное накопление множества новых эмпирических данных о наследственности и изменчивости. К такого рода данным можно отнести следующие открытия: открытие дискретного характера наследственности; обоснование представления о гене и хромосомах как носителях генов; представление о линейном расположении генов; доказательство существования мутаций и возможность их искусственно вызывать; установление принципа чистоты гамет, законов доминирования, расщепления и сцепления признаков; разработка методов гибридологического анализа, чистых линий и инцухта, кроссинговера (нарушение сцепления генов в результате обмена участками между хромосомами) и др. Важно и то, что все эти и другие открытия были экспериментально подтвержденными, строго обоснованными.

В первой четверти ХХ в. интенсивно развивались и теоретические аспекты генетики. Особенно большую роль сыграла хромосомная теория наследственности, разработанная в 1910 – 1915 гг. в трудах Т. Моргана, А. Стертеванта, К. Бриджеса, Г. Дж. Меллера. Она строилась на следующих исходных абстракциях: хромосома состоит из генов; гены расположены на хромосоме в линейном порядке; ген – неделимая корпускула наследственности, “квант”; в мутациях ген изменяется как целое. Эта теория была первой обстоятельной попыткой теоретической конкретизации идей, заложенных в законах Менделя.

Первые 30 лет ХХ в. прошли под знаком борьбы между собой различных концепций наследственности. Так, против хромосомной теории наследственности выступал У. Бэтсон, считавший, что эволюция состоит не в изменениях генов под влиянием внешней среды, а лишь в выпадении генов, в накоплении генетических утрат.

1.2. Создание синтетической теории эволюции

Преодоление противоречий между эволюционной теорией и генетикой стало возможным на основе синтетической теории эволюции, которая выступает основанием всей системы современной эволюционной биологии. Синтез генетики и эволюционного учения был качественным скачком в развитии как генетики, так и эволюционной теории. Он означал создание качественно нового ядра системы биологического познания, свидетельствовал о переходе биологии с классического на современный, неклассический уровень развития, начале формирования методологических установок неклассической биологии.

Принципиальные положения синтетической теории эволюции были заложены работами С.С. Четверикова (1926), а также Р. Фишера, С. Райта, Дж. Холдейна (1929 – 1932) и др. Непосредственными предпосылками для синтеза генетики и теории эволюции выступали: хромосомная теория наследственности Т. Моргана, биометрические и математические подходы к анализу эволюции, закон Харди – Вейберга для идеальной популяции (гласящий, что такая популяция стремится сохранить равновесие концентрации генов при отсутствии факторов, изменяющих его), результаты эмпирического исследования изменчивости в природных популяциях и др.

В основе этой теории лежит представление о том, что элементарной “клеточкой” эволюции является не организм и не вид, а популяция. Именно популяция выступает той реальной целостной системой взаимосвязи организмов, которая обладает всеми условиями для саморазвития, прежде всего способностью наследственного изменения в смене биологических поколений. Элементарной единицей наследственности выступает ген (участок молекулы ДНК, отвечающий за развитие определенных признаков организма). Наследственное изменение популяции в каком-либо определенном направлению осуществляется под воздействием ряда эволюционных факторов (т. е. таких факторов, которые изменяют генотипический состав популяции) – мутационный процесс (поставляющий элементарный эволюционный материал), популяционные волны (колебания численности популяции в ту или иную сторону от средней численности, входящих в нее особей), изоляция (закрепляющая различия в наборе генотипов и способствующая делению исходной популяции на несколько самостоятельных), естественный отбор как “процесс, определяющий вероятность достижения определенными индивидами репродукционного возраста” (имеющий разные формы – по относительной жизнеспособности, по фенотипическому признаку, стабилизирующий отбор, дизруптивный отбор, ведущий отбор и др.). Естественный отбор является ведущим эволюционным фактором, направляющим эволюционный процесс.

Формирование синтетической теории эволюции ознаменовало собой переход к популяционному стилю мышления, который пришел на смену организмоцентрическому.

Создание синтетической теории эволюции на основе популяционной генетики ознаменовало собой начало преодоления противопоставления исторического и структурно-инвариантного “срезов” в исследовании живого. Найдя принципиальную основу для объединения генетики и теории эволюции, идей организации и истории органического мира, синтетическая теория эволюции тем самым кладет начало качественно новому этапу в развитии биологии – переходу к созданию единой системы биологического знания, воспроизводящей законы и развития и функционирования органического мира как целого, начало всеобъемлющего синтеза эволюционной биологии и наук, изучающих структурно-инвариантный аспект живого. Такой синтез нацеливает па изучение жизни как единого целостного многоуровневого процесса, выявление того, как сущность живого проявляет себя в его конкретных органических формах и уровнях.

1.3. Революция в молекулярной биологии

Во второй половине 40-x годов в биологии произошло важное событие — осуществлен переход от белковой к нуклеиновой трактовке природы гена. Предпосылки новых открытий в области биохимии складывались раньше, в первые три десятилетия XX в., в частности, в школе П. Левина (США) . В 1936 г. в СССР А. Н. Белозерский получил из растения тимонуклеиновую кислоту, которая до тех пор выделялась лишь в животных организмах, показав тем самым тождество животных и растительных миров и на молекулярном уровне. Важные идеи, имевшие характер далеко идущих научных прогнозов, открывавшие новые широкие ориентиры познания, намного опередившие свое время, были выдвинуты Н. К. Кольцовым (1872 – 1940). Так, еще в 1927 г. он высказал мысль о том, что при размножении клеток осуществляется матричная ауторепродукция материнских молекул. Правда,. Н. К. Кольцов считал, что эти процессы осуществляются на белковой основе, ведь в то время генетические свойства ДНК его не были известны. Именно незнание наследственных свойств ДНК определяло то обстоятельство, что до середины 40-х годов биохимия развивалась относительно независимо от генетики. Скачок в направлении их тесного взаимодействия произошел тогда, когда биология перешла от белковой к нуклеиновой трактовке природы гена. (В начале 40-х годов впервые и появляется термин “молекулярная биология”.)

Читайте также  Эволюция концепций маркетинга

В 1944 г. О. Эвери, К. Мак-Леод и М. Мак-Карти определили, что носителем свойства наследственности является ДНК. С этого времени и начался бурный, неудержимый, лавинообразный рост молекулярной биологии. Последовавшие в 1949 – 1951 гг. исследования Э. Чаргаффа, сформулировавшего знаменитые правила, объясняющие структуры ДНК (об эквивалентном соотношении пуриновых и пиримидиновых остатков в структуре ДНК, равенства аденина и тимина, гуанина и цитозина и др.), а также рентгенографические исследования ДНК, проведенные М. Уилкином и Р. Франклином, подготовили почву для расшифровки Дж. Уотсоном и Ф. Криком в 1953 г. структуры ДНК (двойную спиралевидность этой молекулы и ее способность к разделению на две половины). Молекула ДНК состоит из двух комплементарных полинуклеотидных цепей, каждая из которых выступает в качестве матрицы для синтеза новых аналогичных цепей. Именно позтому в хромосомах клеток молекула ДНК способна к ауторепродукции. Свойство самоудвоения ДНК и обеспечивает явление наследственности. Расшифровка структуры ДНК была великой революцией в молекулярной биологии. Это открытие явилось ключом к пониманию того, что происходит в гене при передаче наследственных признаков.

1.4. Методологические установки современной биологии

Представление о том, что “клеточкой” эволюционного процесса выступает не организм, а популяция может рассматриваться как исходный момент в формировании системы методологических установок неклассической биологии. Такая система значительно отличается от методологических регулятивов классической биологии. Основные направления, по которым произошло их размежевание, следующие.

Во-первых, качественно новое представление объекта познания (полисистемное видение биологического объекта, отказ от моноцентризма и организмоцентризма в пользу полицентризма и популяционного стиля мышления).

Во-вторых, качественно новая гносеологическая ситуация, требующая явного указания на условия познания, на особенности субъект объектных отношений.

В-третьих, установление диалектического единства ранее противопоставлявшихся друг другу методологических подходов. На этом пути формируются методологические установки, предполагающие:

· единство описательно — классифицирующего и объяснительно — номотетического подходов;

· единство операций расчленения, редукции к более элементарным компонентам с процессами интегрирующего воспроизводства целостной организации;

Основные этапы развития биологии в XX веке

1. Переоткрытие законов Менделя. Вступление в XX в. ознаменовалось в биологии бурным развитием генетики. Важнейшим исходным событием явилось новое открытие законов Менделя. В 1900 г. законы Менделя были переоткрыты независимо сразу тремя учеными — Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии.

1) Закон единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся по альтернативным вариантам одного и того же признака, все потомство от такого скрещивания окажется единообразным и будет нести признак одного из родителей. Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны — Аа), а значит и по фенотипу.

2) Закон расщепления: при скрещивании гибридов первого поколения между собой среди гибридов второго поколения наблюдается расщепление признака в определенном соотношении: по фенотипу 3:1, по генотипу 1.

Закон чистоты гамет. Появление во втором поколении рецессивного признака одного из родителей может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде, 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из каждой аллельной пары.

3) Закон независимого комбинирования признаков: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

При дигибридном скрещивании двух двух дигеторозигот между собой, во втором поколении гибридов будет наблюдаться расщепление признаков по фенотипу в соотношении 9:3:3:1.

Далее последовала лавина эмпирических открытий: открытие дискретного характера наследственности; обоснование представления о гене и хромосомах как носителях генов, представление о линейном расположении генов; доказательство существования мутаций и возможность вызывать их искусственно и т.д.

2) Создание хромосомной теории наследственности, в которой были обобщены теоретические аспекты генетики. Хромосомная теория наследственности была разработанна в 1910—1915 гг. в трудах А. Вейсмана, Т. Моргана, А. Стертеванта, Г.Дж. Меллера и др. Ее основные положения:

1) гены находятся в хромосомах;

2) гены в хромосомах расположены линейно, друг за другом и не перекрываются;

3) гены, расположенные в одной хромосоме, называются сцепленными и составляют группу сцепления.

4) Закон Моргана: гены, расположенные в одной хромосоме, наследуются совместно.

Наследственность – передача наследственной информации от одного поколения другому. Изменчивость – это способность живых организмов приобретать новые признаки и свойства. Изменчивость отражает взаимосвязь организма с окружающей средой. Различают:

— наследственная (генотипическая) изменчивость обусловлена возникновением новых генотипов и приводит, как правило, к изменению фенотипа.

— ненаследственная (модификационная) изменчивость отражает изменения фенотипа под действием условий существования организма, не затрагивающих генотип.

— онтогенетическая изменчивость отражает реализацию закономерных изменений в ходе индивидуального развития организма.

Наследственные изменения генетического материала называют мутациями. Свойства мутаций:

— мутации возникают внезапно, скачкообразно,

— мутации наследственны, т.е. стойко передаются из поколения в поколение.

— мутации ненаправленны – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков,

— одни и те же мутации могут возникать повторно,

— по своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

3) Антидарвинизм. Первые 30 лет XX в. прошли под знаком борьбы представителей различных концепций наследственности, выступающих против эволюционной теории Дарвина.

Антидарвинизм – совокупность различных концепций, отрицающих ведущую роль естественного отбора в эволюции органического мира. Основные течения антидарвинизма сложились во второй половине 19 – начале 20 века. К ним относятся различные формы неоламаркизма, батмогенез, ортогенез, неокатастрофизм, телеогенез и др. Современные антидарвинистические концепции обычно претендуют на решение проблемы макроэволюции, недоступной для экспериментальной проверки, как правило, являются разновидностями автогенеза.

Автогенез – идеалистическая концепция в эволюционном учении, рассматривающая эволюцию как процесс развертывания предшествующих задатков, носящий целенаправленный характер и происходящий на основе изначальных внутренних потенциальных возможностей. Автогенетический характер носят учения о градациях Ламарка, аристогенез Осборна, батмогенез Копа, ортогенез Эймера, номогенез Берга и др.

Аристогенез – эволюционная концепция Осборна (1931-34), согласно которой прогрессивная эволюция осуществляется в результате возникновения и накопления особых «генов улучшения» — аристогенов. Осборн предполагал, что изменения, обусловленные аристогенами, незначительны и бесполезны при своем возникновении. Однако постепенно накапливаясь и усиливаясь под влиянием различных факторов, они ведут к возникновению нового приспособления под действием естественного отбора. Аристогенез – разновидность неоламаркизма.

Батмогенез – идеалистическая эволюционная концепция Копа (1871), согласно которой в основе прогрессивного развития живых существ лежит внутреннее стремление к самосовершенствованию – сила роста, или батмизм. Концепция батмизма исходит из того, что развитие низших организмов происходит под влиянием физико-химических факторов среды, а у более высокоразвитых организмов главное значение приобретает употребление или неупотребление органов. Коп считал, что с появлением разума эволюционные преобразования осуществляются путем сознательного выбора. Именно сознательный выбор на основе присущей, согласно батмизму, всему живому силы роста создает новые адаптации организмов, а естественный отбор лишь сохраняет или уничтожает их. Эта концепция лежит в основе психоламаркизма.

Гологенез (ологенез) – автогенетическая телеологическая концепция, согласно которой процесс онто- и филогенеза представляет собой единое целое и не зависит от внешних условий, а полностью определяется внутренними причинами. Разработана Розой в 1918. Согласно гологенезу видообразование осуществляется путем разделения исходного вида на 2 дочерних вследствие внутреннего стремления наследственной основы организмов к раздвоению. Один из видов развивается ускоренно, другой – замедленно, причем именно медленное развитие ведет к прогрессивным преобразованиям. Отбор элиминирует лишь то, что предопределено к вымиранию. В качестве причины вымирания гологенез предполагает исчерпание способности зародышевой плазмы к изменениям.

Ортогенез – концепция в эволюционном учении, утверждающая, что развитие живой природы обусловлено внутренними факторами, направляющими ход эволюции по определенному пути. Суть ортогенеза заключается в том, что направленность эволюции определяется изначальной направленностью самой изменчивости и не зависит от естественного отбора.

Телеология – идеалистическое учение об изначальной целесообразности в природе, приписывание внутренней цели развитию природы. Телеологические представления впервые высказаны Аристотелем, который носителем изначальной целесообразности считал особую нематериальную субстанцию – энтелехию. Впоследствии присутствием подобной субстанции (жизненная сила, целенаправленность) объясняли качественную специфику живого, органическую целенаправленность эволюционных преобразований (витализм, неоламаркизм и др.).

4) Создание синтетической теории эволюции, являющейся основанием современной эволюционной биологии. СТЭ – синтез генетики и эволюционного учения Дарвина.

Принципиальные положения синтетической теории эволюции были заложены работами С. С. Четверикова (1926), а также Р. Фишера, С. Райта, Дж. Холдейна, И.П. Дубинина (1929—1932) и др. Непосредственными предпосылками для синтеза генетики и теории эволюции выступали; хромосомная теория наследственности, биометрические и математические подходы к анализу эволюции, закон Харди — Вейберга для идеальной популяции (гласящий, что такая популяция стремится сохранить равновесие концентрации генов при отсутствии факторов, изменяющих его), результаты эмпирического исследования изменчивости в природных популяциях и др.

В основе этой теории лежит представление о том, что элементарной «клеточкой» эволюции является не организм и не вид, а популяция. Совокупность эволюционных процессов, протекающих в популяциях вида и приводящих к изменениям генофондов этих популяций и образованию новых видов называется микроэволюцией. Микроэволюция происходит на основе мутационной изменчивости под контролем естественного отбора.

Мутационный процесс – единственный источник резерва наследственной изменчивости популяций. Во-первых, природные популяции насыщены самыми разнообразными мутациями. Подсчитано, что 10-15 % гамет каждого организма несут те или иные мутационные аллели. Во-вторых, благодаря комбинативной изменчивости мутации могут широко распространяться в популяциях.

В разных популяциях одного вида частота мутантных генов неодинакова. Эти различия обусловлены неодинаковыми условиями внешней среды: миграция вида, природные катастрофы, популяционные волны, изоляция изменяют, закрепляют и усиливают генетические различия между популяциями. Т.о., изменения частоты генов, вызванные теми или иными факторами внешней среды, служат основой возникновения различий между генофондами популяций и в дальнейшем обуславливают преобразование их в новые виды вследствие действия естественного отбора.

Естественный отбор является ведущим эволюционным фактором, направляющим эволюционный процесс.

Формы естественного отбора:

— движущий отбор — направленный отбор, форма естественного отбора, благоприятствующая лишь одному направлению изменчивости и не благоприятствующая всем остальным ее вариантам;

— стабилизирующий отбор – форма естественного отбора, благоприятствующая сохранению в популяции оптимального в данных условиях фенотипа; наблюдается при длительном сохранении постоянных условий внешней среды;

— дизруптивный (разрывающий) отбор – форма естественного отбора, благоприятствующая нескольким направлениям изменчивости, но не благоприятствующая среднему состоянию признака.

Формирование синтетической теории эволюции ознаменовало переход к популяционной концепции, сменившей организмоцентрическую.

5) Создание молекулярной биологии. Во второй половине 40-х гг. в биологии произошло важное событие — осуществлен переход от белковой к нуклеиновой трактовке природы гена. В 1944 г. американскими биохимиками (О. Эвери и др.) было установлено, что носителем свойства наследственности является ДНК. С этого времени началось лавинообразное развитие молекулярной биологии. Последовавшие в 1949—1951 гг. исследования Э. Чаргаффа, сформулировавшего знаменитые правила, объясняющие структуры ДНК, а также рентгенографические исследования ДНК, проведенные М. Уилкинсом и др., подготовили почву для расшифровки в 1953 г. (Ф. Крик, Д. Уотсон) структуры ДНК. Расшифровка структуры ДНК стала ключом к пониманию того, что происходит в гене при передаче наследственных признаков.

Но расшифровка структуры молекулы ДНК была лишь первым шагом на пути выявления механизма наследственности и изменчивости. Далее за относительно непродолжительный срок времени были получены другие важнейшие результаты: выяснена роль РНК; расшифрован генетический код; осуществлен синтез гена; теоретически решена проблема биосинтеза белка; расшифрована аминокислотная последовательность многих белков; на этой основе выяснен принцип и особенности функционирования ферментативных молекул, химически синтезирован ряд ферментов; заложены основы генной инженерии.

Дата добавления: 2014-12-03 ; просмотров: 33 ; Нарушение авторских прав

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: