Резисторный каскад предварительного усиления на биполярном транзисторе - ABCD42.RU

Резисторный каскад предварительного усиления на биполярном транзисторе

Резистивный каскад на биполярном транзисторе

Введение

Наиболее важное назначение электронных приборов — усиление электрических сигналов. Устройства, предназначенные для выполнения этой задачи, называются электронными усилителями.

Усилитель (рис. 1) — это электронное устройство, управляющее энергией, поступающей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают.

Рис. 1. Схематичное представление работы усилителя

Усилительные устройства широко используются в автоматике и телемеханике, в следящих, управляющих и регулирующих системах, счетно-решающих и вычислительных машинах, контрольно-измерительных приборах, бытовой радиоаппаратуре и т.д.

Важнейшими техническими показателями являются: коэффициент усиления (по напряжению, току и мощности), входное и выходное сопротивления, выходная мощность, диапазон усиливаемых частот, частотные, фазовые и нелинейные искажения.

Большинство источников усиливаемого сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, т.к. при слабом управляющем напряжении невозможно получить сколько-нибудь значительные изменения выходного тока, а, следовательно, и выходной мощности. Поэтому в состав структурной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность полезного сигнала в нагрузку, входят предварительные каскады усиления.

Эти каскады принято классифицировать по характеру сопротивления нагрузки в выходной цепи транзистора. Наибольшее применение получили резистивные усилительные каскады, сопротивлением нагрузки которых служит резистор.

В каскадах предварительного усиления на биполярных транзисторах чаще других используется схема с общим эмиттером (ОЭ), которая обладает высоким коэффициентом усиления по напряжению и мощности, сравнительно большим входным сопротивлением и допускает использование одного общего источника питания для цепей базы и коллектора.

Резистивный каскад на биполярном транзисторе

Простейшая схема резистивного усилительного каскада с общим эмиттером и питанием от одного источника показана на рис. 2. Входной сигнал поступает на базу и изменяет ее потенциал относительно заземленного эмиттера. Это приводит к изменению тока базы, а, следовательно, к изменению тока коллектора и напряжения на нагрузочном сопротивлении RK. Разделительный конденсатор Сp1 служит для предотвращения протекания постоянной составляющей тока базы через источник входного сигнала. С помощью конденсатора Сp2 на выход каскада подается переменная составляющая напряжения Uкэ изменяющаяся по закону входного сигнала, но значительно превышающая его по величине. Важную роль играет резистор RБ в цепи базы, обеспечивающий выбор исходной рабочей точки на характеристиках транзистора и определяющий режим работы каскада по постоянному току.

Рис. 2. Простейшая схема резистивного усилительного каскада с общим эмиттером

Для выяснения роли резистора RБ обратимся к рис. 3, иллюстрирующему процесс усиления сигнала схемой с общим эмиттером. В принципе процесс усиления можно отразить следующей взаимосвязью электрических величин.

Um ВХ I Б m IК m IК m RК (Um КЭ = EК — IК m RК ) = U m ВЫХ

Действительно, рассматривая вначале рис. 3, а, а затем рис. 3, б, можно убедиться в том, что напряжение входного сигнала с амплитудой (Um ВХ=UБЭ m) синфазно изменяет величину тока базы. Эти изменения базового тока вызывают в коллекторной цепи пропорциональные изменения тока коллектора и напряжения на коллекторе, причем амплитуда коллекторного напряжения (с учетом масштаба по оси абсцисс) оказывается значительно больше амплитуды напряжения на базе. Следует обратить внимание на то, что напряжения сигнала на входе и на выходе каскада сдвинуты между собой по фазе на 180°, т. е. находятся в противофазе.

Это означает, что рассматриваемый каскад, не нарушая закон изменения сигнала (в нашем частном случае сигнал изменяется по синусоидальному закону), в то же время поворачивает его фазу на 180°.

Рис. 3. Графическое пояснение процесса усиления сигнала схемой с общим эмиттером

Для получения наименьших искажений усиливаемого сигнала рабочую точку (точку покоя) П следует располагать в середине отрезка АВ нагрузочной прямой, построенной в семействе выходных характеристик транзистора (режим усиления класса А). Из рис. 3, б видно, что положение рабочей точки П соответствует току смещения в цепи базы IБП . Для получения выбранного режима необходимо в усилителе обеспечить требуемую величину тока смещения в цепи базы. Для этого и служит резистор RБ в схеме рис. 2.

Схема, приведенная на рис. 2, получила название схемы с фиксированным базовым током. Смещение фиксированным током базы отличается минимальным числом деталей и малым потреблением тока от источника питания. Кроме того, сравнительно большое сопротивление резистора RБ (десятки кОм) практически не влияет на величину входного сопротивления каскада. Однако этот способ смещения пригоден лишь тогда, когда каскад работает при малых колебаниях температуры транзистора. Кроме того, большой разброс и нестабильность параметра β даже у однотипных транзисторов делают режим работы каскада весьма неустойчивым при смене транзистора, а также с течением времени.

Более эффективной является схема с фиксированным напряжением смещения на базе (рис. 4). В этой схеме резисторы R’Б и R»Б , подключенные параллельно источнику питания ЕК , составляют делитель напряжения.

При этом повышается стабильность режима работы схемы, так как изменения тока в цепях эмиттера и коллектора транзистора незначительно влияют на величину напряжения смещения.

Рис. 4. Схема резистивного каскада с фиксированным напряжением смещения

Сопротивление R»Б делителя включено параллельно входному сопротивлению транзистора. Кроме того, пренебрегая малым внутренним сопротивлением источника питания, можно считать, что R’Б и R»Б включены параллельно друг другу. Поэтому делитель, образованный резисторами R’Б и R»Б должен обладать достаточно большим сопротивлением (порядка нескольких кОм). В противном случае входное сопротивление каскада окажется недопустимо малым.

При построении схем транзисторных усилителей приходится принимать меры для стабилизации положения рабочей точки на характеристиках. Основной дестабилизирующий фактор, нарушающий устойчивую работу транзисторной схемы, — влияние температуры. Существуют различные способы термостабилизации режима работы транзисторных каскадов.

Наибольшее распространение получила схема термостабилизации режима, приведенная на рис. 5. В этой схеме навстречу фиксированному прямому напряжению смещения, снимаемому с резистора R»Б, включено напряжение, возникающее на резисторе RЭ при прохождении через него тока эмиттера. Пусть по какой-либо причине, например при увеличении температуры, постоянная составляющая коллекторного тока возрастает. Так как IЭ =IК+IБ, то увеличение тока IК приведет к увеличению тока эмиттера IЭ и падению напряжения на резисторе RЭ. В результате напряжение между эмиттером и базой UБЭ уменьшится, что приведет к уменьшению тока базы IБ, а следовательно, и тока IК.

Наоборот, если по какой либо причине коллекторный ток уменьшится, то уменьшится и напряжение на резисторе RЭ, а прямое напряжение UБЭ возрастет. При этом увеличится ток базы и ток коллектора.

Рис. 5. Схема резистивного каскада с фиксированным напряжением смещения

В большинстве случаев резистор RЭ шунтируется конденсатором CЭ достаточно большой емкости (порядка десятков микрофарад). Это делается для отвода переменной составляющей тока эмиттера от резистора RЭ.

Резисторный каскад

Каскады предварительного усиления.

Каскады предварительного усиления и находятся между источником сигнала и выходным каскадом, из назначение – усилить сигнал, полученный от источника до уровня, который необходимо подать на вход выходного каскада, чтобы получить на его выходе заданную мощность или напряжение.

Для того, что работа предварительного каскада усиления была оптимальной необходимо пользоваться следующими критериями:

— необходимое и достаточное усиление по напряжению и по току, Кобщ = произведению К всех усилительных каскадов (схемы с ОЭ и с ОИ);

— высокие качественные показатели (минимальные частотные, фазовые и нелинейные искажения, т.е выбирать каскады с наименьшим количеством дросселей, трансформаторов, конденсаторов; использование режима А);

В качестве усилительных элементов в предварительных каскадах используют полевые, биполярные транзисторы и ИМС.

По полосе усиливаемых частот различают три типа усилителей:

1) узкополосные 20Гц. 30кГц;

2) широкополосные и импульсные усилители 0. 10МГц;

3) узкополосные высокочастотные (резонансные).

Основным каскадом в предварительных каскадах является резисторный каскад, так как он содержит минимальное число реактивных элементов и может обеспечить достаточную величину коэффициента усиления.

Читайте также  История развития гражданского права в России

Анализ работы резисторного каскада сводится к тому, чтобы подобрать такие элементы схемы, которые обеспечат наибольшее усиление и наименьшие частотные и фазовые искажения.

Для удобства расчетов характеристик и параметров резисторного каскада предварительного усиления, как правило, пользуются эквивалентными схемами.

Эквивалентная схема – является упрощенной структурой любого усилительного каскада и отражает его основные свойства и функции. Для создания структурной схемы использую приемы условного сокращения элементов принципиальной схемы.

Так вспомогательные цепи фильтров Сф и Rф, цепочки катодного смещения и эмиттерной стабилизации могут отсутствовать из-за своей необязательности. А емкости блокировочных конденсаторов предполагаются бесконечно большими, тогда сопротивления коллектора, эмиттера и фильтра окажутся накоротко замкнутыми и не будут оказывать влияние на работу схемы.

Где См – емкость монтажа каскада, образуемая монтажными проводниками и деталями и может составлять в схемах на транзисторах – 3-4 пФ, на пальчиковых лампах и малогабаритных деталях – 5-7 пФ, на цокольных лампах и крупногабаритных деталях – 9-12 пФ.

Так как емкость межкаскадной связи обычно на несколько порядков выше паразитных, то все имеющиеся емкости между верхним и нижним проводниками можно без заметной погрешности суммировать:

Со = Свых + См + Свх э сл.

Следовательно схему можно еще больше упростить, заменив параллельно включенные сопротивления делителя напряжения смещения на общее:

Rдел = Rдел1сл +Rдел2сл/ (Rдел 1сл + Rдел 2сл)

Для анализа и вывода расчетных формул удобно всю область рабочих частот поделить на три участка:

— область нижних частот, в которой на усиление резисторного каскада влияет только конденсатор межкаскадной связи;

— средних частот, где усиление практически постоянно;

— верхних частот, в которой на свойства каскада влияет только емкость С0, нагружающая каскад.

На этом основании полные эквивалентную схему можно преобразовать в три: для нижних, средних и высоких частот.

Режим работы биполярного транзистора в резисторном каскаде предварительного усиления определяется значениями в точке покоя: коллекторным током Iко, напряжением коллектор-эмиттер Uкэо, током базы Iбо, напряжением база – эмиттер Uбэо.

Ток Iко = 2 Iвх m сл.

Напряжение Uкэо = 0,4 Ек.

Значение Iбо = Iко / h21 min.

Uбэо = 0,7 В (для кремниевых транзисторов.

Режим работы по постоянному току для полевого транзистора определяется справочными значениями транзистора и Ес = 0,9 Uси max.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

ElectronicsBlog

Обучающие статьи по электронике

Биполярные транзисторы.Часть 3.Усилительный каскад.

Здравствуйте, продолжим знакомство с биполярными транзисторами. В предыдущем посте был рассмотрен транзистор в качестве электронного ключа. Но это ещё не все возможности биполярных транзисторов, можно сказать даже ключевой режим работы – это лишь малая доля в схемах, где используются транзисторы. В львиной доле транзисторных схем транзистор используется в качестве усилительного прибора. В данных схемах транзистор используется в так называемой активной области. Транзистор в качестве усилительного прибора, включается в усилительный каскад, который кроме транзистора содержит ещё цепи питания, нагрузку и цепи связи с последующим каскадом.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Схемы включения транзистора

Для биполярных транзисторов возможны три схемы включения, которые обладают способностью усиливать мощность: с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК). Схемы отличаются способом включения источника сигнала и нагрузки (RН).


Схема с общим эмиттером


Схема с общей базой


Схема с общим коллектором.

Для всех схем включения транзистора при отсутствии сигнала, подаваемого от источника (еГ), необходимо установить начальный режим по постоянному току – режим покоя. При этом как и говорилось в предыдущем посте эмиттерный переход должен быть открытым, а коллекторный – закрытым. Для транзисторов p-n-p это достигается подачей отрицательного напряжения на коллектор (коллекторного напряжения E0C) и отрицательного напряжения на базу (напряжения смещения E0B). Для транзисторов n-p-n полярность этих напряжений должна быть противоположной. Режим покоя транзистора опредяляется положением его рабочей точки, которое зависит от тока эмиттера IE (практически равного току коллектора IС и зависящего от E0B) и от напряжения E0C.

Усилительные параметры транзистора

Усилительные свойства транзисторов для малого переменного сигнала оцениваются с помощью различных систем параметров, связывающих входные токи и напряжения, но нормируются только два основных параметра: h21e и fТ (или fh21b). Зная параметр транзистора h21e для заданного режима покоя IE, можно с помощью следующих формул определить основные параметры усилительного каскада в области НЧ:

где S — проводимость транзистора, re — сопротивление эмиттера транзистора.

Таким образом, можно вычислить значения |K| — коэффициент усиления напряжения транзистора, |Ki| — коэффициент усиления тока транзистора, ZВХ — входное сопротивление транзистора:

Параметры усилительного каскада Схема включения
ОЭ ОБ ОК
|K| S*RH S*RH S*RH /( 1 + S*RH)
|Ki| h21e h21e/(1 + h21e) h21e
ZВХ h21e*re re h21e*RH

Области применения усилительных каскадов ОЭ, ОБ и ОК определяются их свойствами.

Каскад с общим эмиттером обеспечивает усиление, как по напряжению, так и по току. Его входное сопротивление порядка сотен Ом, а выходное – десятков кОм. Отличительная особенность – изменяет фазу усиливаемого сигнала на 180°. Обладает лучшими усилительными свойствами по сравнению с ОБ и ОК и поэтому является основным типом каскада для усиления малых сигналов.

Каскад с общей базой обеспечивает усиление только по напряжению (практически такое же, как ОЭ). Входное сопротивление каскада в (1+h21e) раз меньше, чем ОЭ, а выходное – в (1+h21e) раз больше. В отличие от ОЭ каскад ОБ не изменяет фазы усиливаемого сигнала. Малое входное сопротивление каскада ОБ ограничивает его применение в УНЧ: практически он используется только как элемент дифференциального усилителя.

Каскад с общим коллектором обеспечивает усиление только по току (практически такое же, как ОЭ). В отличие от ОЭ каскад ОК не изменяет фазы усиливаемого сигнала. При К = 1 каскад ОК как бы повторяет усиливаемое напряжение по величине и фазе. Поэтому такой каскад называется эмиттерным повторителем. Входное сопротивление ОК зависит от сопротивления нагрузки RH и велико (почти в h21e раз больше RH), а выходное сопротивление зависит от сопротивления источника сигнала RГ и мало (почти в h21e раз меньше RГ). Каскад ОК благодаря большому входному и малому выходному сопротивлению находит применение как в предварительных, так и в мощных УНЧ.

Цепи питания биполярных транзисторов

Для обеспечения заданного режима работы биполярного транзистора требуется установить положение точки покоя, определяемое током покоя IС. С этой целью на электроды транзистора должны быть поданы два напряжения: коллекторное и напряжение смешения базы. Полярность этих напряжений зависит от структуры транзистора. Для транзисторов p-n-p оба этих напряжения должны быть отрицательными, а для n-p-n – положительными, относительно эмиттера транзистора.. Величины коллекторного и базового напряжения должны быть различны; кроме того, различными оказываются и требования к стабильности этих напряжений. Поэтому используются две отдельные цепи питания – коллектора и базы.

Питание коллектора

Цепи питания коллектора содержат элементы, показанные ниже.

В многокаскадных усилителях коллекторные цепи всех каскадов подключаются параллельно к одному общему источнику E0C. В этом случае цепь питания коллектора содержит развязывающий фильтр RфCф. Назначение такого фильтра – устранить паразитную обратную связь через общий источник питания. При питании от сети переменного тока, кроме того, уменьшаются пульсации напряжения питания. Резистор Rф включают последовательно с нагрузкой RН, и на нём теряется часть коллекторного напряжения. Поэтому рекомендуется сопротивление Rф выбирать исходя из допустимого падения напряжения:

Напряжение между коллектором и эмиттером транзистора UCE выбирается в пределах

При этом минимальное значение UC не должно быть менее 0,5 В, иначе рабочая точка переходит в область насыщения и возрастают нелинейные искажения.

Схема цепей питания базы

Цепи питания базы содержат элементы, показанные ниже

Читайте также  Культура Беларуси 2


Схема с фиксированным током


Схема с фиксированным напряжением


Схема с автоматическим смещением

Заданный режим работы транзистора устанавливается путём подачи на его базу требуемого напряжения смещения UB или создания в цепи базы требуемого тока смещения IB. В обоих случаях между эмиттером и базой устанавливается напряжение UBE,равное (в зависимости от IB) 0,1…0,3 В (для германиевых транзисторов) или 0,5…0,7 В (для кремниевых). Смещение базы может осуществляться от общего с коллектором источника питания E0C или от отдельного источника питания базовых цепей E.

При питании от E0C смещение базы может быть фиксированным (по току или напряжению) или автоматическим. Схемы с фиксированным током и с фиксированным напряжением не обеспечивают стабильности рабочей точки транзистора при изменении температуры.

Расчёт усилительного каскада

Схема с автоматическим смещением, получившая наибольшее распространение, содержит три резистора: Rb1, Rb2 и RE. За счёт отрицательной обратной связи создаваемой RE в цепи эмиттера, достигается требуемая стабилизация рабочей точки. Блокировочный конденсатор CE используется для устранения нежелательной обратной связи по переменному току. Схема эффективна как для германиевых, так и для кремниевых транзисторов. Для определения величин Rb1, Rb2 и RE должны быть известны напряжение источника питания E0C и ток покоя IС. Ориентировочные значения Rb1, Rb2 и RE могут быть определены с помощью приведённых ниже формул.

Входящие в вышеприведённые формулы b, c и UBE зависят от типа транзистора и режима его работы.

Для германиевых транзисторов выбираются: b ≈ 0,2; с – в пределах 3…5; UBE – в пределах 0,1…0,2.

Для кремниевых транзисторов: b ≈ 0,1; с – в пределах 10…25; UBE – в пределах 0,6…0,7.

При увеличении c и уменьшении b стабильность схемы снижается. Большие значения UBE выбирают для больших значений IС.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Принципиальная схема резисторного каскада предварительного усиления гармонических сигналов на биполярном транзисторе

Страницы работы

Содержание работы

по связи и информатизации

по курсу «Основы схемотехники»

Выполнил: Мамаев С.В.

Ускоренная форма обучения

Проверил: Травин Г.А.

Начертить принципиальную схему резисторного каскада предварительного усиления гармонических сигналов на биполярном транзисторе, включенном по схеме с общим эмиттером, рассчитать параметры элементов схемы, режим работы каскада по постоянному току, коэффициент усиления в области средних частот, входные параметры каскада и амплитуду входного сигнала.

Исходные данные для расчета:

Амплитуда сигнала на нагрузке Uн,В

Верхняя рабочая частота fв, МГц

Нижняя рабочая частота fн, Гц

Неравномерность АЧХ в рабочей полосе частот ∆, %

Емкость нагрузки Сн, пФ

Сопротивление нагрузки Rн, кОм

Внутренне сопротивление источника сигнала Rг, Ом

Напряжение источника сигнала Ео, В

Параметры транзистора КТ315А:

Расчет каскада предварительного усиления ведется аналитическим методом.

1. Принципиальная схема резисторного каскада предварительного усиления гармонических сигналов на биполярном транзисторе, включенного по схеме с общим эмиттером имеет следующий вид:

2. С целью достижения максимального коэффициента усиления рассчитаем:

· общую нагружающую каскад емкость Со по формуле:

где Свых = Ск = 7 пФ — выходная емкость транзистора;

См 5 пФ — емкость монтажа;

Сн =100 пФ — емкость нагрузки.

· относительные коэффициенты усиления на нижней fн и верхней fв рабочих частотах по формуле:

где ∆ = 20 % — неравномерность АЧХ в рабочей полосе частот;

кˆв = кˆн =1- ∆ % / 100 = 1- 20/100 = 0,8.

· эквивалентное сопротивление нагрузки R в эк в области верхних частот по формуле:

R в экв = (1- кˆв 2 )/2•π•fв•Со

R в эк = (1- кˆв 2 )/2•π•fв•Со= (1- 0,8 2 )/2•3,14•2•10 6 •112•10 -12 = 426,3 [Ом]

· вычисляем сопротивление коллектора R к (сопротивление связи) из формулы:

Из шкалы ГОСТа выбираем ближайший к расчетному номинал Rк = 430 ± 5%[Ом].

3. Рассчитаем ток покоя транзистора:

I к= (1,5 … 3) • Uн / R в эк =(1,5 … 3) • 0,4 / 426,3 = 1,4 …2,8 [мА].

Для того чтобы частотные и усилительные свойства транзистора были оптимальными, ток покоя должен быть в пределах 2 … 3 [мА]. Поэтому выбираем ток покоя транзистора I к=2,5 [мА].

4. Проведем расчет резистора в цепи эмиттера Rэ, который предназначен для эмиттерной стабильности постоянного коллекторного тока:

Rэ о-Uкэ-IкRк) / Iк,

где Uкэ3…5 В — напряжение покоя; выбираем для расчета Uкэ=3,925В.

Rэ о-Uкэ-IкRк) / Iк = (15-3,925-2,5•10 -3 •430) / 2,5•10 -3 = 4•10 3 = 4 [кОм].

Из шкалы ГОСТа выбираем ближайший к расчетному номинал Rэ = 3,9 ± 5%[кОм].

где h 21э= h 21эмах• h 21эмin=30•120 = 60 – расчетный статический коэффициент передачи тока.

Резистивный каскад на биполярном транзисторе

Простейшая схема резистивного усилительного каскада с общим эмиттером и питанием от одного источника показана на рис. 2. Входной сигнал поступает на базу и изменяет ее потенциал относительно заземленного эмиттера. Это приводит к изменению тока базы, а, следовательно, к изменению тока коллектора и напряжения на нагрузочном сопротивлении RK. Разделительный конденсатор Сp1 служит для предотвращения протекания постоянной составляющей тока базы через источник входного сигнала. С помощью конденсатора Сp2 на выход каскада подается переменная составляющая напряжения Uкэ, изменяющаяся по закону входного сигнала, но значительно превышающая его по величине. Важную роль играет резистор RБ в цепи базы, обеспечивающий выбор исходной рабочей точки на характеристиках транзистора и определяющий режим работы каскада по постоянному току.

Рис. 2. Простейшая схема резистивного усилительного каскада с общим эмиттером

Для выяснения роли резистора RБ обратимся к рис. 3, иллюстрирующему процесс усиления сигнала схемой с общим эмиттером. В принципе процесс усиления можно отразить следующей взаимосвязью электрических величин.

Um ВХ I Б m IК m IК m RК (Um КЭ = EК IК m RК ) = U m ВЫХ

Действительно, рассматривая вначале рис. 3, а, а затем рис. 3, б, можно убедиться в том, что напряжение входного сигнала с амплитудой (Um ВХ=UБЭ m) синфазно изменяет величину тока базы. Эти изменения базового тока вызывают в коллекторной цепи пропорциональные изменения тока коллектора и напряжения на коллекторе, причем амплитуда коллекторного напряжения (с учетом масштаба по оси абсцисс) оказывается значительно больше амплитуды напряжения на базе. Следует обратить внимание на то, что напряжения сигнала на входе и на выходе каскада сдвинуты между собой по фазе на 180°, т. е. находятся в противофазе.

Это означает, что рассматриваемый каскад, не нарушая закон изменения сигнала (в нашем частном случае сигнал изменяется по синусоидальному закону), в то же время поворачивает его фазу на 180°.

Рис. 3. Графическое пояснение процесса усиления сигнала схемой с общим эмиттером

Для получения наименьших искажений усиливаемого сигнала рабочую точку (точку покоя) П следует располагать в середине отрезка АВ нагрузочной прямой, построенной в семействе выходных характеристик транзистора (режим усиления класса А). Из рис. 3, б видно, что положение рабочей точки П соответствует току смещения в цепи базы IБП . Для получения выбранного режима необходимо в усилителе обеспечить требуемую величину тока смещения в цепи базы. Для этого и служит резистор RБ в схеме рис. 2.

Схема, приведенная на рис. 2, получила название схемы с фиксированным базовым током. Смещение фиксированным током базы отличается минимальным числом деталей и малым потреблением тока от источника питания. Кроме того, сравнительно большое сопротивление резистора RБ (десятки кОм) практически не влияет на величину входного сопротивления каскада. Однако этот способ смещения пригоден лишь тогда, когда каскад работает при малых колебаниях температуры транзистора. Кроме того, большой разброс и нестабильность параметра β даже у однотипных транзисторов делают режим работы каскада весьма неустойчивым при смене транзистора, а также с течением времени.

Более эффективной является схема с фиксированным напряжением смещения на базе (рис. 4). В этой схеме резисторы RБ и R«Б , подключенные параллельно источнику питания ЕК , составляют делитель напряжения.

Читайте также  История развития геометрии как науки

При этом повышается стабильность режима работы схемы, так как изменения тока в цепях эмиттера и коллектора транзистора незначительно влияют на величину напряжения смещения.

Рис. 4. Схема резистивного каскада с фиксированным напряжением смещения

Сопротивление R«Б делителя включено параллельно входному сопротивлению транзистора. Кроме того, пренебрегая малым внутренним сопротивлением источника питания, можно считать, что RБ и R«Б включены параллельно друг другу. Поэтому делитель, образованный резисторами RБ и R«Б должен обладать достаточно большим сопротивлением (порядка нескольких кОм). В противном случае входное сопротивление каскада окажется недопустимо малым.

При построении схем транзисторных усилителей приходится принимать меры для стабилизации положения рабочей точки на характеристиках. Основной дестабилизирующий фактор, нарушающий устойчивую работу транзисторной схемы, — влияние температуры. Существуют различные способы термостабилизации режима работы транзисторных каскадов.

Наибольшее распространение получила схема термостабилизации режима, приведенная на рис. 5. В этой схеме навстречу фиксированному прямому напряжению смещения, снимаемому с резистора R«Б, включено напряжение, возникающее на резисторе RЭ при прохождении через него тока эмиттера. Пусть по какой-либо причине, например при увеличении температуры, постоянная составляющая коллекторного тока возрастает. Так как IЭ =IК+IБ, то увеличение тока IК приведет к увеличению тока эмиттера IЭ и падению напряжения на резисторе RЭ. В результате напряжение между эмиттером и базой UБЭ уменьшится, что приведет к уменьшению тока базы IБ, а следовательно, и тока IК .

Наоборот, если по какой либо причине коллекторный ток уменьшится, то уменьшится и напряжение на резисторе RЭ, а прямое напряжение UБЭ возрастет. При этом увеличится ток базы и ток коллектора.

Рис. 5. Схема резистивного каскада с фиксированным напряжением смещения

В большинстве случаев резистор RЭ шунтируется конденсатором CЭ достаточно большой емкости (порядка десятков микрофарад). Это делается для отвода переменной составляющей тока эмиттера от резистора RЭ.

Cхемы усилительных каскадов на транзисторах

При реализации транзисторных усилителей приходится решать ряд специфических задач. Прежде всего требуется обеспечить рабочий режим транзистора. Виды рабочих режимов транзистора, таких как режим линейного усиления A, режимы B, C, ключевые режимы D и F, мы уже рассматривали ранее. Чаще всего схемы усилительных каскадов на транзисторах рассматриваются применительно к режиму A. Наиболее распространенными схемами усилительных каскадов являются:

  • Схема с фиксированным током базы
  • Схема с фиксированным напряжением на базе
  • Схема коллекторной стабилизации
  • Схема эмиттерной стабилизации
  • Дифференциальный усилитель
  • Двухтактный усилитель

Схема с фиксированным током базы

Схема с фиксированным током базы является самой простой схемой усилительного каскада. Эта схема усилительного каскада используется в основном начинающими радиолюбителями. Кроме того она рассматривается в учебном процессе при обучении основам схемотехники. Схема усилительного каскада с фиксированным током базы позволяет использовать для питания цепей базы и коллектора транзистора один и тот же источник питания. Схема с фиксированным током базы приведена на рисунке 1.


Рисунок 1 Схема усилительного каскада с фиксированным током базы

Недостатком данной схемы усилительного каскада является зависимость линейных и нелинейных параметров усилителя от температуры, напряжения источника питания и разброса параметров транзисторов. По этой причине усилительные каскады с фиксированным током базы в современной аппаратуре не применяется. Подробнее.

Схема с фиксированным напряжением на базе

Схема с фиксированным напряжением на базе может применяться не только для питания усилительных каскадов на биполярных транзисторах, но и для реализации усилительных каскадов на полевых транзисторах. Схема с фиксированным напряжением на базе приведена на рисунке 2.


Рисунок 2 Схема усилительного каскада с фиксированным напряжением на базе

Схема усилительного каскада с фиксированным напряжением на базе вполне может подойти и для питания полевого транзистора В этом случае она будет называться схемой с фиксированным напряжением на затворе. Схема усилительного каскада с фиксированным напряжением на затворе приведена на рисунке 3.


Рисунок 3 Схема усилительного каскада с фиксированным напряжением на затворе

Стабильность параметров данной схемы усилительного каскада на транзисторе тоже является неудовлетворительной, что приводит к нестабильности основных параметров усилительного каскада, поэтому большее распространение получили схемы усилительных каскадов с эмиттерной и коллекторной стабилизацией. Подробнее.

Схема коллекторной стабилизации

Схема коллекторной стабилизации позволяет сохранять на выходе усилительного каскада половину питания в широком диапазоне питающих напряжений. Это достигнуто за счет отрицательной обратной связи по напряжению по постоянному току. В качестве примера коллекторной стабилизации режима работы транзистора на рисунке 4 приведена схема усилительного каскада на биполярном транзисторе, включенном по схеме с общим эмиттером и коллекторной стабилизацией.


Рисунок 3 Схема усилительного каскада с коллекторной стабилизацией

Схемы усилительных каскадов с коллекторной стабилизацией обычно применяются в высокочастотных усилителях, таких как усилители радиочастоты, усилители промежуточной частоты или буферные усилители в синтезаторах частот, которые используются в гетеродинах приемников и передатчиков систем мобильной радиосвязи (в том числе и в сотовых телефонах). Подробнее.

Схема эмиттерной стабилизации

Схема эмиттерной стабилизации — это самая распространенная схема стабилизации режима работы транзисторного каскада в настоящее время. Усилительный каскад с эмиттерной стабилизацией обладает наибольшей стабильностью параметров из рассмотренных нами схем. Это связано с наибольшей достижимой глубиной обратной связи по постоянному току. Наиболее распространенная схема усилительного каскада с эмиттерной стабилизацией и включением транзистора с общим эмиттером приведена на рисунке 5.


Рисунок 5 Схема усилительного каскада с эмиттерной стабилизацией

В настоящее время усилительные каскады с эмиттерной стабилизацией наиболее широко применяются в схемах радиоприемников и передатчиков, входящих в состав радиоэлектронной аппаратуры. Они ставятся на входе специализированных микросхем для улучшения качественных параметров устройства в целом. Подробнее.

Дифференциальный усилитель

Еще одной распространенной схемой усилительного каскада является дифференциальный усилитель. Схема дифференциального усилителя получила распространение благодаря высокой помехоустойчивости входного дифференциального сигнала. Еще одним преимуществом данной схемы усилительного каскада является возможность применения низковольтных источников питания. Дифференциальный усилитель образуется при соединении эмиттеров двух транзисторов на едином сопротивлении или генераторе тока. Один из вариантом усилительного каскада, реализованного в виде дифференциального усилителя приведен на рисунке 6.


Рисунок 6 Схема дифференциального усилителя

Усилительные каскады, построенные по схеме дифференциального усилителя широко применяются в современных интегральных схемах, таких как операционные усилители, усилители промежуточной частоты и даже полностью функциональные узлы, такие как приемник ЧМ синалов, радиотракт сотовых телефонов, высококачественные смесители частоты и т.д. Подробнее.

Двухтактный усилитель

В двухтактном усилителе может быть использован любой из режимов работы транзистора, однако чаще всего в этой схеме каскада усилителя используется режим работы B. Это связано с тем, что двухтактные каскады применяются на выходе усилителя, где требуется повышенная экономичность работы (высокий к.п.д. усилительного каскада). Двухтактные усилители реализуются как на транзисторах с одинаковой проводимостью, так и с разной проводимостью транзисторов. Схема одного из самых распространенных видах двухтактных усилителей приведена на рисунке 7.


Рисунок 7 Схема двухтактного усилителя

Схемы двухтактных усилителей позволяют значительно уменьшать уровень четных гармоник входного сигнала, поэтому данная схема усилительного каскада получила значительное распространение, однако схема двухтактного усилителя широко применяется и в цифровой техники. В качестве примера можно привести КМОП-микросхемы. Подробнее.

Дата последнего обновления файла 20.11.2013

Понравился материал? Поделись с друзьями!

  1. Шило В. Л. «Линейные интегральные схемы в радиоэлектронной аппаратуре» под ред. Е.И. Гальперина — М.: «Сов. радио» 1974
  2. Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича

Вместе со статьей «Cхемы усилительных каскадов на транзисторах» читают:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: