Электромагниты и их применение - ABCD42.RU

Электромагниты и их применение

Принцип работы электромагнита

Электромагнит — устройство и принцип работы

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него.

Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.

Магнитные поля возникают в случае, когда весь набор электронов металлического объекта начинает вращаться в одинаковом направлении.

В искусственных магнитах это движение обуславливается при помощи электромагнитного поля.

Для постоянных электромагнитов данное явление считается натуральным.

Обмотку для электромагнита выполняют из медных или алюминиевых изолированных проводов. Существуют и сверхпроводящие электромагниты. Магнитный провод делают из магнитно-мягкого материла, чаще всего стали (конструкционной, литой и электротехнической), чугуна и сплавов железа с кобальтом или никелем. Снижение потери на вихревой ток (ВхТ) осуществляется при помощи создания магнитопровода из множества листов.

Общая характеристика

Подключившись к источнику постоянного тока (а также напряжения), катушка и провод начинают получать энергетические ресурсы и создают магнитное поле, которое является подобным полю, что образуется в постоянных полосовых магнитах.

Плотность, которой обладает магнитный поток, всегда является пропорциональной величине электрического тока, протекающего сквозь толщу катушки.

Полярность электромагнита определяют по направлению тока.

Механизм образования включает в себя наматывание провода вокруг сердечника, выполненного из металла, через который потом пропускают электричество из определенного источника.

Если внутренняя полость катушка заполнена воздухом, то ее называют соленоидом.

Увеличивать силу электромагнита, а точнее его поля, можно при помощи:

  • применения сердечников из «мягкого» железа;
  • применения больших чисел витков;
  • применения электрического тока в больших размерах.

Электромагниты бывают следующих видов:

  • Нейтральные постоянного тока. В таком устройстве магнитный поток создается посредством постоянного электрического тока, пропущенного через обмотку. А значит, сила притяжения такого электромагнита варьируется в зависимости только от величины тока, а не от его направления в обмотке.
  • Поляризованные постоянного тока. Действие электромагнита подобного рода основано на наличии двух независимых магнитных потоков. Если говорить о поляризующем, то его наличие создается обычно постоянными магнитами (в редких случаях — дополнительными электромагнитами), и нужен он для создания притягивающей силы при выключенной обмотке. А действие такого электромагнита зависит от величины и направления электрического тока, который движется в обмотке.
  • Переменного тока. В таких устройствах катушка электромагнита питается электричеством переменного тока. Соответственно, с определенной периодичностью магнитный поток меняет свое направление и величину. А сила притяжения варьируется лишь по величине, из-за чего она «пульсирует» от минимального до максимального значения с частотой, которая имеет двукратную величину по отношению к частоте питающего ее электрического тока.

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит. Плунжер,находящийся внутри катушки, притягивается к её центру с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера.

Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера.

Конструкция линейного соленоида вытяжного типа

Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.

Вращательный соленоид

Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).

Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.

Электромагниты и их применение

Урок 38. Технология 8 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Электромагниты и их применение»

Я думаю, что любой из вас не единожды сталкивался с явлением магнетизма. На вопрос, почему кусок железной руды притягивает гвозди, булавки и так далее, ответ даётся в физике. Это происходит потому, что в пространстве вокруг магнита имеется особое силовое поле, которое называют магнитным.

Но это поле существует не только вокруг природных магнитов. Его можно создать и при помощи электрического тока. Например, если по проводнику пропускать электрический ток, то вокруг него тоже возникает магнитное поле. Если электрический ток выключить, то магнитное поле сразу же исчезнет.

Но при прохождении тока по проводу возникает очень слабое магнитное поле.

Чтобы его усилить, провод надо намотать на полый каркас в виде катушки из диэлектрика. Таким образом получают электромагнит.

Такие магниты широко используются в электродвигателях, подъёмных кранах, для изготовления реле, автоматических устройств, электрических звонков и так далее.

Как же выглядит электромагнит? Он представляет собой катушку медной изолированной проволоки. По ней, сообщая свойства магнита, протекает электрический ток. Чтобы ещё больше усилить магнитные свойства катушки, в неё вставляют стальной сердечник.

На электрических схемах электромагнит обозначают так:

Схема включения электромагнита в электрическую цепь выглядит так:

Для изготовления катушек или обмоток используют специальное приспособление, которое называется намоточный станок.

Он состоит из каркаса, который закрепляют на валу с помощью резиновых колец. Катушку с которой будет сматываться провод устанавливают на вертикальном стержне. Затем конец провода пропускают в отверстие щеки каркаса и закрепляют. Наматывать провод нужно слоями, плотно укладывая витки и одновременно направляя их рукой.

После того как будет намотано нужное количество витков, провод нужно отрезать. Его конец пропустить через отверстие в щеке каркаса и закрепить. Поверхность обмотки следует изолировать несколькими слоями бумаги. На катушке указывают количество витков в обмотке и сечение провода, которым она выполнена.

В электромагнитах, которые предназначены для использования в лабораторно-практических работах, выводы или концы обмотки делают из гибкого, так называемого монтажного провода. К обмоточному его присоединяют пайкой. Место пайки изолируют и закрепляют.

Существует три способа усиления магнитного поля электромагнита: увеличить число витков при одном и том же сердечнике, усилить ток в катушке, увеличить размер сердечника.

Как и у постоянного магнита, у электромагнита есть два магнитных полюса. Но, если полюсами обычного полюса управлять нельзя, то у электромагнита – можно. Если ток проходит по обмотке, то электромагнит будет притягивать. Если же ток выключен, то все магнитные свойства теряются.

Читайте также  Острый одонтогенный остеомиелит челюстных костей

Чаще всего обмотка электромагнита изготавливают из медной проволоки. В зависимости от назначения обмотка может иметь различное количество витков и сечение провода тоже может быть любым.

Каркас может быть из картона, текстолита, пластмассы и других изоляционных материалов. Роль каркаса – удерживать обмотку и изолировать её от сердечника.

Другое название сердечника – это магнитопровод. Они могут быть притяжными или втяжными.

Как определить, какой сердечник имеет тот или иной электромагнит? Если к полюсам электромагнита притягивается специальная пластина, то это притяжная конструкция. Пластина носит название «якорь». Как правило, электромагниты с притяжным сердечником используют в технике для выполнения какого-либо действия. Например, для замыкания и размыкания электрических контактов.

После выключения тока сердечник и якорь практически полностью размагничиваются, то есть притяжение якоря к полюсам электромагнита прекращается.

Электромагниты с втяжным якорем или тяговые электромагниты часто используют в качестве привода в электротехнике.

С помощью него приводят в движение, например, стрелку электроизмерительного устройства. Втяжной якорь находится в состоянии устойчивого равновесия, если его концы одинаково удалены от середины катушки. Если же сердечник выведен из равновесия, то сила, которая действует на него со стороны магнитного поля катушки, стремиться направить его обратно.

Теперь давайте узнаем о том, как применяются электромагниты на примере электромагнитного реле и электрического звонка.

Начнём с определения.

Электромагнитное реле – это прибор, с помощью которого можно управлять какими-либо электроприборами на расстоянии.

Давайте посмотрим на принцип работы этого реле.

Под действием магнитного поля, которое создаёт обмотка катушки, верхнее плечо якоря притягивается к сердечнику. Нижнее плечо якоря отклоняет контактную пластину до тех пор, пока она не соприкоснётся с контактной пластиной. Соприкоснувшись, контакты замыкают электрическую цепь, в которую включён какой-либо потребитель. При отключении тока якорь с контактной пластиной отходит от сердечника, электрические контакты расходятся и цепь размыкается.

Существует несколько видов контактов, которые могут быть установлены в электромагнитных реле. Замыкающие, размыкающие и переключающие.

Следующий прибор, принцип действия которого мы рассмотрим – это электрический звонок.

Применяют его для звуковой сигнализации, в устройствах автоматического контроля, защиты в быту и на производстве.

Электромагнит является основной частью электрического звонка. При нажатии на кнопку электрическая цепь замыкается. Ток проходит по обмотке электромагнита и намагничивает сердечник, который, в свою очередь, притягивает к себе якорь с молоточком и контактом. При этом молоточек ударяет по чашечке звонка, контакты размыкаются, и электрическая цепь разрывается.

В результате этого сердечник размагничивается и отпускает якорь. Контакты соединяются и все повторяется сначала.

В зависимости от конструкции электрические звонки могут работать на батарейках или от электрической сети.

Подведём итоги урока.

Сегодня на уроке мы узнали, что электромагнит представляет собой катушку изолированной медной проволоки, по которой протекает электрический ток, который и сообщает катушке свойства магнита. Вспомнили, как обозначается электромагнит в электрической цепи. Узнали, что изготавливают или обматывают катушку на намоточном станке. Разобрали, что для того чтобы усилить магнитное поле электромагнита надо: либо увеличить число витков при одном и том же сердечнике, либо усилить ток в катушке, либо увеличить размер сердечника. Узнали, что в отличие от постоянного магнита, электромагнитом можно управлять. Если выключить ток, то он потеряет свои магнитные свойства. Поговорили о видах конструкции сердечника электромагнита: c притяжным или втяжным якорем. Рассмотрели принцип работы электромагнитного реле и электрического звонка.

Электромагнит

Электромагнит – это электротехническое устройство, создающее магнитное поле при прохождении через него электрического тока. Электромагниты (ЭМ) применяются практически во всех сферах деятельности человека.

История

В 1824 году учёным Стёржденом был создан первый электромагнит. Конструкция представляла собой подковообразный железный стержень с 18 витками медной жилы. При подключении концов проводника к гальванической батарее устройство приобретало свойства магнита. При весе около двухсот граммов опытный образец электромагнита был способен притягивать металлические предметы массой до 4 кг.

Принцип действия

Чтобы понять, как работают электромагниты, надо рассмотреть их конструкцию. Простое устройство объясняет принцип действия электромагнита. При протекании электрического заряда в теле обмотки возникает излучение магнитного поля, пронизывающее магнитопровод.

Внутри металла или ферромагнита, в соответствии с законами физики, формируются микроскопические магнитные поля, именуемые доменами. Их поля под внешним воздействием обмотки выстраиваются в определённом порядке. В результате магнитные силы доменов суммируются, образуя сильное магнитное поле, сообщая магнитопроводу способность притягивать массивные металлические предметы.

Важно! Чтобы остановить электромагнитную индукцию, достаточно отключить ЭМ от источника тока. При этом сохранится частица магнитного поля. Такой эффект называют гистерезисом.

Устройство

Электромагнит представляет собой простую конструкцию, состоящую из электромагнитной катушки с металлическим или ферромагнитным сердечником. Добавочной деталью является якорь. Этот элемент используется в реле. Притягиваясь к магниту, он замыкает собой клеммы электроустройства.

Классификация

ЭМ различают по способам создания магнитных полей. Существуют электромагниты трёх разновидностей:

  • электромагнит переменного тока;
  • нейтральный прибор постоянного тока;
  • поляризованный ЭМ постоянного тока.

Магниты, работающие на переменном токе, меняют направление магнитного потока вместе с удвоенной частотой электротока.

Нейтральные ЭМ, подключённые к источнику постоянного тока, создают магнитные потоки, не зависящие от направления электротока.

В поляризованных устройствах ориентировка магнитного потока привязана к направлению электрического тока. Поляризованные ЭМ состоят из двух магнитов. Один из них направляет поляризующий поток магнитного поля на второй электромагнит для его отключения.

Преимущества использования электромагнитов

Главным преимуществом электрического магнита перед постоянным источником магнитного поля заключается в том, что он приводится в рабочее состояние под воздействием электрического тока. То есть, когда нужно оказать магнитное влияние на определённую часть пространства, ток включают. Это позволяет обеспечивать ритмичную работу ЭМ, что с успехом применяется в разных видах электро оборудования, приборов и устройств.

Электромагнит можно обнаружить в электрических счётчиках, сепараторных установках, трансформаторах, теле,- и аудиотехнике и других устройствах.

Мощные магниты установлены на мостовых кранах в цехах металлургических заводов и лебёдках предприятий по сбору металлолома.

Одно из первых применений ЭМ – это динамики. Звуковое устройство в своей основе имеет электромагнит, который заставляет колебаться мембрану в звуковом диапазоне.

ЭМ используются в металлоискателях для обнаружения металлосодержащих предметов под землёй, в воде и различных массивах.

Сверхпроводящий электромагнит

Сверхпроводимостью считают свойство материалов с сопротивлением, близким к нулю. Электромагниты с практически нулевым показателем сопротивления обладают сверхмощным магнитным полем. Сила магнитного воздействия может заставить парить в пространстве такие диамагнетики, как кусочки свинца и органические объекты.

Как было замечено физиками, металлы приобретают свойство сверхпроводимости при сверхнизкой температуре. Чтобы получить эффект сверхпроводимости, обмотки ЭМ помещают в сосуд Дьюара с жидким гелием, который снабжён клапаном для сброса паров вещества. Сверхпроводящие магниты применяют в медицинском оборудовании – аппаратах МРТ (магнитный резонансный томограф). В экспериментальных поездах на воздушной подушке применяются сверхпроводящие магниты.

Самый мощный электромагнит

Самые мощные магниты встроены в Большой Адронный Коллайдер. Это ускоритель заряженных частиц, предназначенный для разгона встречных потоков тяжёлых ионов свинца и протонов. Коллайдер находится на территории Европейского центра ядерных исследований недалеко от Женевы (Швейцария). В его строительстве принимали участие и проводят исследования около 10 тысяч учёных и инженеров из более, чем 100 стран мира.

Читайте также  Электробезопасность в быту

Как сделать электромагнит 12в

Самый просто способ, как сделать электромагнит, – это взять обычный гвоздь, провод и батарейку. По всей длине стержня наматывают изолированный провод. Концы проводника прижимают к полюсам батарейки. Для того чтобы заряд не расходовался зря, один конец провода припаивают к положительному контакту. Другое окончание нужно делать в виде подпружиненной дуги, которую прижимают к клемме батарейки со знаком минус. На нижнем фото видно, как можно сделать электромагнит в домашних условиях.

Обратите внимание! При изготовлении электромагнита с батарейкой можно использовать контактную колодку со старого устройства. Для отключения магнита будет достаточно вынуть батарейку из контактной коробки.

Расчёты

Перед тем, как начать собирать электромагнит своими руками, делают предварительный расчёт его параметров. Элементы конструкции рассчитывают отдельно для ЭМ постоянного и переменного тока.

Для постоянного тока

Перед тем, как производить расчёты, определяются с требуемой величиной магнитодвижущей силы (МДС) катушки. Параметры обмотки должны обеспечивать нужную МДС, в то же время катушка не должна перегреваться, иначе будет потерян изоляционный слой провода намотки. Исходными данными для расчёта являются напряжение в проводе электромагнитной катушки и требуемая величина магнитодвижущей силы.

Методики расчёта электромагнитов постоянного тока постоянно публикуются в сети интернета. Там же можно подобрать формулы для определения МДС, поперечного сечения сердечника и провода обмотки, его длины.

Дополнительная информация. В основном в интернете ищут расчёты электромагнитов на 12 вольт, сделанных своими руками. В зависимости от потребностей, можно пойти разными путями расчётов. В основном выбирают «рецепты» по определению сечения и длины провода обмотки с питанием от стандартной батарейки формата «А» или «АА».

Для переменного тока

Основой для ЭМ переменного тока является расчёт обмотки. Как и в предыдущем случае, руководствуются исходными требованиями величины МДС. Несмотря на большое количество рекомендуемых формул расчёта, чаще всего «способности» устройства определяют опытным подбором параметров деталей его конструкции. Методики расчёта ЭМ переменного тока всегда можно найти во всемирной информационной паутине (интернете).

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.

Видео

Где применяют электромагниты. Электромагниты и их применение

Существуют четыре фундаментальные силы физики, и одна из них называется электромагнетизм. Обычные магниты имеют ограниченное применение. Электромагнит — это устройство, которое создает магнитное поле во время прохождения электрического тока. Поскольку электричество может быть включено и выключено, то же самое касается и электромагнита. Он даже может быть ослаблен или усилен путем уменьшения или увеличения тока. Электромагниты находят свое применение в различных повседневных электроприборах, в разных областях промышленности, от обычных переключателей до двигательных установок космических аппаратов.

Что такое электромагнит?

Электромагнит можно рассматривать как временный магнит, который функционирует с потоком электричества, и его полярность может быть легко изменена путем изменения направления тока. Также сила электромагнита может быть изменена путем изменения величины тока, протекающего через него.

Сфера применения электромагнетизма необычайно широка. Например, магнитные выключатели являются предпочтительными в использовании тем, что они менее восприимчивы к изменениям температуры и способны поддерживать номинальный ток без ложного срабатывания.

Электромагниты и их применение

Вот некоторые из примеров, где они используются:

  • Моторы и генераторы. Благодаря электромагнитам стало возможным производство электродвигателей и генераторов, которые работают по принципу электромагнитной индукции. Это явление было открыто ученым Майклом Фарадеем. Он доказал, что электрический ток создает магнитноее поле. Генератор использует внешнюю силу ветра, движущейся воды или пара, вращает вал, который заставляет двигаться набор магнитов вокруг спирального провода, чтобы создать электрический ток. Таким образом, электромагниты преобразуют в электрическую другие виды энергии.
  • Практика промышленного использования. Только материалы, сделанные из железа, никеля, кобальта или их сплавов, а также некоторые природные минералы реагируют на магнитное поле. Где используют электромагниты? Одной из сфер практического применения является сортировка металлов. Поскольку упомянутые элементы используются в производстве, с помощью электромагнита эффективно сортируют железосодержащие сплавы.
  • Где применяют электромагниты? С их помощью можно также поднимать и перемещать массивные объекты, например, автомобили перед утилизацией. Они также используются в транспортировке. Поезда в Азии и Европе используют электромагниты для перевозки автомобилей. Это помогает им двигаться на феноменальных скоростях.

Электромагниты в повседневной жизни

Электромагниты часто используются для хранения информации, так как многие материалы способны поглощать магнитное поле, которое может быть впоследствии считано для извлечения информации. Они находят применение практически в любом современном приборе.

Где применяют электромагниты? В быту они используются в ряде бытовых приборов. Одной из полезных характеристик электромагнита является возможность изменения магнитной силы, при изменении силы и направление тока, текущего через катушки или обмотки вокруг него. Колонки, громкоговорители и магнитофоны — это устройства, в которых реализуется этот эффект. Некоторые электромагниты могут быть очень сильными, причем их сила может регулироваться.

Где применяют электромагниты в жизни? Простейшими примерами служат дверные звонки и электромагнитные замки. Используется электромагнитная блокировка для двери, создавая сильное поле. Пока ток проходит через электромагнит, дверь остается закрытой. Телевизоры, компьютеры, автомобили, лифты и копировальные аппараты — вот где применяют электромагниты, и это далеко не полный список.

Электромагнитные силы

Силу электромагнитного поля можно регулировать путем изменения электрического тока, проходящего через провода, обернутые вокруг магнита. Если изменить направление электрического тока, полярность магнитного поля также меняется на противоположную. Этот эффект используется для создания полей в магнитной ленте или жестком диске компьютера для хранения информации, а также в громкоговорителях акустических колонок в радио, телевизоре и стереосистемах.

Читайте также  Расчет одномодового круглого волновода

Магнетизм и электричество

Словарные определения электричества и магнетизма отличаются, хотя они являются проявлениями одной и той же силы. Когда электрические заряды движутся, они создают магнитное поле. Его изменение, в свою очередь, приводит к возникновению электрического тока.

Изобретатели используют электромагнитные силы для создания электродвигателей, генераторов, аппаратов МРТ, левитирующих игрушек, бытовой электроники и множества других бесценных устройств, без которых невозможно представить повседневную жизнь современного человека. Электромагниты неразрывно связаны с электричеством, они просто не смогут работать без внешнего источника питания.

Применение грузоподъемных и крупномасштабных электромагнитов

Электродвигатели и генераторы жизненно важны в современном мире. Мотор принимает электрическую энергию и использует магнит, чтобы превратить электрическую энергию в кинетическую. Генератор, наоборот, преобразует движение, используя магниты, чтобы вырабатывать электричество. При перемещении габаритных металлических объектов используются грузоподъемные электромагниты. Они также необходимы при сортировке металлолома, для отделения чугуна и других черных металлов от цветных.

Настоящее чудо техники — японский левитирующий поезд, способный развивать скорость до 320 километров в час. В нем используются электромагниты, помогающие парить в воздухе и невероятно быстро передвигаться. Военно-морские силы США проводят высокотехнологичные эксперименты с футуристической электромагнитной рельсовой пушкой. Она может направлять свои снаряды на значительные расстояния с огромной скоростью. Снаряды обладают огромной кинетической энергией, поэтому могут поражать цели без использования взрывчатых веществ.

Понятие электромагнитной индукции

При изучении электричества и магнетизма важным является понятие электромагнитной индукции. Индукция имеет место, когда в проводнике в присутствии изменяющегося магнитного поля возникает поток электричества. Применение электромагнитов с их индукционными принципами активно используются в электродвигателях, генераторах и трансформаторах.

Где можно применять электромагниты в медицине?

Магнитно-резонансные томографы (МРТ) также работают с помощью электромагнитов. Это специализированный медицинский метод для обследования внутренних органов человека, которые недоступны для непосредственного обследования. Наряду с основным используются дополнительные градиентные магниты.

Где применяют электромагниты? Они присутствуют во всех видах электрических устройств, включая жесткие диски, колонки, двигатели, генераторы. Электромагниты используются повсеместно и, несмотря на свою незаметность, занимают важное место в жизни современного человека.

Электромагниты и их применение

Вильям Стержен (1783–1850)

— английский инженер электрик, создал первый подковообразный электромагнит, способный удерживать груз больше собственного веса (200-граммовый электромагнит был способен удерживать 4 кг железа).

Первые электромагниты В.Стержена

Первые электромагниты, когда ещё не умели изготавливать изолированную проволоку, делали так: железный стержень обматывали шелком, поверх него наматывали проволоку так, чтобы витки не соприкасались!

Джозеф Генри (1797–1878)

— американский физик, работы по электричеству и магнетизму. Усовершенствовал электромагнит.
В 1827 г. Дж. Генри стал изолировать уже не сердечник, а саму проволоку. Только тогда появилась возможность наматывать витки в несколько слоев.
Исследовал различные методы намотки провода для получения электромагнита. Создал 29 килограммовый магнит, удерживающий гигантский по тем временам вес — 936 кг.

Дж. Генри сконструировал праобраз электромагнитного телеграфа, который состоял из батареи и электромагнита, соединенных медным проводом длиной в милю (1.85 км), протянутого по стенам лекционного зала.

Сэмюэл Финли Бриз Морзе

— публично продемонстрировал практически пригодную телеграфную систему, которую позднее назвали телеграфным аппаратом Морзе.

Электрические импульсы, переданные аппаратом Морзе по проводам на расстояние 2-х миль (3.7 км), привели в действие электромагнит и на бумажной ленте точками и черточками чернил (кодом Морзе) были напечатаны символы первого телеграфного сообщения.

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОМАГНИТОВ

Электромагнитные подъемные краны

На заводах применяются электромагнитные подъемные краны, которые могут переносить огромные грузы без их крепления. Здесь используются электромагниты.

Пока в обмотке электромагнита есть ток, ни одна железяка не упадет с него. Но если ток в обмотке почему-либо прервется, авария неизбежна. И такие случаи бывали. На одном американском заводе электромагнит поднимал железные болванки. Внезапно на электростанции Ниагарского водопада, подающей ток, что-то случилось, ток в обмотке электромагнита пропал; масса металла сорвалась с электромагнита и всей своей тяжестью обрушилась на голову рабочего.

Чтобы избежать повторения подобных несчастных случаев, а также с целью сэкономить потребление электрической энергии, при электромагнитах стали устраивать особые приспособления.
После того как переносимые предметы подняты магнитом, сбоку опускаются и плотно закрываются прочные стальные подхватки, которые затем сами поддерживают груз,
ток же во время транспортировки прерывается.

В морских портах для перегрузки металлолома используются , наверное, самые мощные круглые грузоподъемные электромагниты. Их масса достигает 10 тонн, грузоподъемность до 64 тонн, а отрывное усилие до 128 тонн.

В зависимости от назначения электромагниты могут весить от долей грамма до сотен тонн и потреблять электрическую мощность — от долей ватта до десятков мегаватт.

принципиальная электрическая схема

Школьный звонок, квартирный звонок имеют подобную электрическую схему.
После подсоединения контактов 1 и 2 к выходу источника тока по замкнутой цепи начинает протекать электрический ток ( часть якоря Я выполняет роль проводника в этой эл. цепи, именно через якорь течет эл. ток и только первоначальное положение якоря создает замкнутую эл. цепь). Вокруг электромагнита Э возникает магнитное поле и притягивает к себе железный якорь Я. Электрическая цепь размыкается и магнитное поле пропадает. Якорь возвращается в первоначальное положение, ударяясь своим другим концом о металлическую чашку (слышен звук удара). При возвращении якоря в первоначальное положение цепь опять замыкается, и по ней снова начинает течь электрический ток. Опять образуется вокруг электромагнита магнитное поле, и все начинается по новой.

Автопогрузчик с магнитным ковшом

Обычный автопогрузчик для сбора металлолома оборудован электромагнитом. Разбросанные по земле железяки сами притягиваются внутрь ковша, облегчая погрузку и перенос груза.

Очиска крови с помощью электромагнита

Очень перспективный метод очистки крови при серьезных заражениях крови, которые не поддаются медикаментозной очистке, разработан медиками. Создан безвредный для организма солевой раствор, содержащий мельчайшие железные шарики, покрытые реагентом. Реагент способен «прилипать» к определенному виду вредных микробов, которые появляются в крови человека при болезнях. Раствор вводится в организм человека, а затем кровь с раствором пропускается через электромагнитную установку, которая «отлавливает» и удаляет из крови железные частицы с налипшими на них бактериями.

Электромагнитный скоростной транспорт

Перспективно использование электромагнитов на скоростных транспортных средствах для создания » магнитной подушки».

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: