Одно и многоатомные спирты - ABCD42.RU

Одно и многоатомные спирты

Спирты

Спирты — кислородсодержащие органические соединения, функциональной группой которых является гидроксогруппа (OH) у насыщенного атома углерода.

Спирты также называют алкоголи. Первый член гомологического ряда — метанол — CH3OH. Общая формула их гомологического ряда — CnH2n+1OH.

Классификация спиртов

По числу OH групп спирты бывают одноатомными (1 группа OH), двухатомными (2 группы OH — гликоли), трехатомными (3 группы OH — глицерины) и т.д.

Одноатомные спирты также подразделяются в зависимости от положения OH-группы: первичные (OH-группа у первичного атома углерода), вторичные (OH-группа у вторичного атома углерода) и третичные (OH-группа у третичного атома углерода).

Номенклатура и изомерия спиртов

Названия спиртов формируются путем добавления суффикса «ол» к названию алкана с соответствующим числом атомов углерода: метанол, этанол, пропанол, бутанол, пентанол и т.д.

Для спиртов характерна изомерия углеродного скелета (начиная с бутанола), положения функциональной группы и межклассовая изомерия с простыми эфирами, которых мы также коснемся в данной статье.

Получение спиртов
  • Гидролиз галогеналканов водным раствором щелочи

Помните, что в реакциях галогеналканов со сПИртовым раствором щелочи получаются Пи-связи (π-связи) — алкены, а в реакциях с водным раствором щелочи образуются спирты.

Присоединения молекулы воды (HOH) протекает по правилу Марковникова. Атом водорода направляется к наиболее гидрированному атому углерода, а гидроксогруппа идет к соседнему, наименее гидрированному, атому углерода.

В результате восстановления альдегидов и кетонов получаются соответственно первичные и вторичные спирты.

Синтез газом в промышленности называют смесь угарного газа и водорода, которая используется для синтеза различных химических соединений, в том числе и метанола.

Получение этанола брожением глюкозы

В ходе брожения глюкозы выделяется углекислый газ и образуется этанол.

В результате такой реакции у атомов углерода, прилежащих к двойной связи, формируются гидроксогруппы — образуется двухатомный спирт (гликоль).

Химические свойства спиртов

Предельные спирты (не содержащие двойных и тройных связей) не вступают в реакции присоединения, это насыщенные кислородсодержащие соединения. У спиртов проявляются новые свойства, которых мы раньше не касались в органической химии — кислотные.

Щелочные металлы (Li, Na, K) способны вытеснять водород из спиртов с образованием солей: метилатов, этилатов, пропилатов и т.д.

Необходимо особо заметить, что реакция с щелочами (NaOH, KOH, LiOH) для предельных одноатомных спиртов невозможна, так как образующиеся алкоголяты (соли спиртов) сразу же подвергаются гидролизу.

Реакция с галогеноводородами

Реакция с галогеноводородами протекают как реакции обмена: атом галогена замещает гидроксогруппу, образуется молекула воды.

В результате реакций спиртов с кислотами образуются различные эфиры.

Дегидратация спиртов (отщепление воды) идет при повышенной температуре в присутствии серной кислоты (водоотнимающего) компонента.

Возможен межмолекулярный механизм дегидратации (при t 140°С) механизм дегидратации становится внутримолекулярный — образуются алкены.

Названия простых эфиров формируются проще простого — по названию радикалов, входящих в состав эфира. Например:

  • Диметиловый эфир — CH3-O-CH3
  • Метилэтиловый эфир — CH3-O-C2H5
  • Диэтиловый эфир — C2H5-O-C2H5

Качественной реакцией на спирты является взаимодействие с оксидом меди II. В ходе такой реакции раствор приобретает характерное фиолетовое окрашивание.

Замечу, что в обычных условиях третичные спирты окислению не подвергаются. Для них необходимы очень жесткие условия, при которых углеродный скелет подвергается деструкции.

Вторичные и третичные спирты определяются другой качественной реакцией с хлоридом цинка II и соляной кислотой. В результате такой реакции выпадает маслянистый осадок.

Первичные спирты окисляются до альдегидов, а вторичные — до кетонов. Альдегиды могут быть окислены далее — до карбоновых кислот, в отличие от кетонов, которые являются «тупиковой ветвью развития» и могут только снова стать вторичными спиртами.

Такой реакцией является взаимодействие многоатомного спирта со свежеприготовленным гидроксидом меди II. В результате реакции раствор окрашивается в характерный синий цвет.

Важным отличием многоатомных спиртов от одноатомных является их способность реагировать со щелочами (что невозможно для одноатомных спиртов). Это говорит об их более выраженных кислотных свойствах.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Одно – и многоатомные спирты

Спирты (алкоголи) — это производные углеводородов, содержащие в молекуле одну или несколько гидроксильных групп — ОН у насыщенных атомов углерода.

Общая формула спиртов: R(OH)m, m>1, где R — УВ радикал; m — число функциональных гидро­ксильных групп—ОН, которое определяет атомность спирта.

Классификация спиртов по строению УВ радикала:

3. Непредельные: алкенолы и алкинолы.

Классификация спиртов по атомности:

2. Многоатомные: двуатомные (этиленгликоль) и трехатомные (Глицерин)

Изомерия и номенклатура

Первые два члена гомологического ряда — СН3ОН и С2Н5ОН — не имеют изомеров, относящихся к классу спир­тов. Для остальных алканолов возможны 2 типа изомерии (в пределах своего класса):

1. изомерия цепи (углеродного скелета);

2. изомерия положения функциональной группы

Спирты изомерны другому классу соединений — про­стым эфирам (R-O-R’).

Электронное строение

Атомы углерода в алканолах находятся в состоянии sp 3 -гибридизации. Молекулы алканолов представляют со­бой диполи. Они содержат полярные связи С—Н, С—О, О—Н. Дипольные моменты связей С →О и О ← Н направлены в сторону атома кислорода, поэтому атом «О» имеет частич­ный отрицательный заряд δ-, а атомы «С» и «Н» — частич­ные положительные заряды δ+. Полярность связи О—Н больше полярности связи С—О вследствие большей разно­сти электроотрицательностей кислорода и водорода. Одна­ко полярность и этой связи недостаточна для диссоциации ее с образованием ионов Н + . Поэтому спирты являются не­электролитами.

Физические свойства

Полярность связи О—Н и наличие неподеленных пар электронов на атоме кислорода определяют физические свойства спиртов.

Температуры кипения спиртов больше температуры ки­пения соответствующих алканов с тем же числом атомов углерода. Это объясняется ассоциацией молекул спиртов вследствие образования межмолекулярных водородных свя­зей.

Водородная связь — это особый вид связи, которая осу­ществляется при участии атома водорода гидроксильной или аминогруппы одной молекулы и атомами с большой электроотрицательностью (О, N, F, C1) другой молекулы. Чем большим положительным зарядом обладает атом во­дорода и чем больше способность другого атома отдавать свои неподеленные электронные пары, тем легче образу­ется водородная связь (ВС) и тем она прочнее.

Прочность ВС значительно меньше прочности ковалентной связи (КС): энергия (Е) образования ВС обычно не превышает 5—7 ккал/моль, средняя Е образования КС ко­леблется в пределах 80—110 ккал/моль.

Гомологическом ряду спиртов нет газообраз­ных веществ.

Все алканолы легче воды, бесцветны, жидкие имеют резкий запах, твердые запаха не имеют. Метанол, этанол и пропанол неограниченно растворяются в воде, с увели­чением числа углеродных атомов растворимость алканолов в воде уменьшается, высшие спирты не растворяются в воде.

Химические свойства

Химические свойства алканолов определяются особен­ностями их электронного строения: наличием в их молеку­лах полярных связей О—Н, С—О, С—Н. Для алканолов ха­рактерны реакции, которые идут с расщеплением этих связей: реакции замещения, отщепления, окисления.

I. Реакции замещения

1. Замещение атома водорода гидроксильной группы вслед­ствие разрыва связи О—Н.

а) Взаимодействие с активными металлами с образова­нием алкоголятов (алканолятов) металлов:2Н5ОН + 2Na → 2C2H5ONa + Н2О

Эти реакции протекают только в безводной среде; в при­сутствии воды алкоголяты полностью гидролизуются: C2H5ONa + Н2О → С2Н5ОН + NaOH

б) Взаимодействие с органическими и неорганическими кислотами с образованием сложных эфиров (реакции этерификации):C2H5OH + HO-O-C-CH3 → CH3O-O-C2H5 + H2O

Замещение гидроксильной группы вследствие разрыва связи С—О.

а) Взаимодействие с галогеноводородами с образовани­ем галогеналканов: С2Н5ОН + НВг → C2H5Br + H2O

б) Взаимодействие с аммиаком с образованием аминов.Реакции идут при пропускании смеси паров спирта саммиаком при 300°С над оксидом алюминия: С2Н5ОН + HNH2 → C2H5-NH2 + Н2О;

II. Реакции отщепления

1. Дегидратация, т. е. отщепление воды

Дегидратация спиртов может быть двух типов: межмо­лекулярная и внутримолекулярная.

а) Межмолекулярная дегидратация спиртов с образовани­ем простых эфиров R—О—R’.Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов:

б) Внутримолекулярная дегидратация спиртов с образо­ванием алкенов.Протекает при более высокой температу­ре. В отличие от межмолекулярной дегидратации в процес­се этих реакций происходит отщепление молекулы воды от одной молекулы спирта: CH3-CH2OH → H2SO4 (конц.), 170°→ H2C=CH2 + H2O

2. Дегидрирование (разрыв связей О—Н и С—Н) а) При дегидрировании первичных спиртов образуются альдегиды: CH3-CH2OH →Cu, t→ + H2

б) При дегидрировании вторичных спиртов образуются кетоны

→Cu, t→ + H2

в) Третичные спирты недегидрируются.

III. Реакции окисления

1. Горение (полное окисление)

Спирты горят на воздухе с выделением большого коли­чества тепла (на этом основано использование спиртовок):

2. Неполное окисление под действием окислителей: кис­лорода воздуха в присутствии катализаторов (например, Си), перманганата калия, дихромата калия и др.

Реакции неполного окисления спиртов по своим резуль­татам аналогичны реакциям дегидрирования:

2C2H5OH + O2Cu, t → 2 + 2H2O

Таким образом, реакции дегидрирования спиртов по сво­ей химической сущности являются реакциями окисления.

Читайте также  Уреаплазмоз. Лечение уреаплазмоза

Способы получения алканолов

1. Гидратация алкенов, т. е. присоединение воды к алкенам H2C=CH2 + H2O →H3PO4, 300 0 C→ CH3-CH2OH

При гидратации гомологов этилена в соответствии с правилом Марковникова образуются вторичные или тре­тичные спирты: CH3-CH=CH2 + H2O →H2SO4, t→ CH3-CHOH-CH3

2. Гидролиз галогеналканов

При действии водного раствора NaOH атом галогена в галогеналкане замещается группой —ОН:

3. Гидрирование альдегидов и кетонов. В присутствии катализаторов (Ni, Pt, Pd, Co) альдегиды восстанавливаются до первичных спиртов, а кетоны — до вторичных спиртов.

4. Специфические способы получения метанола и этанола

СО + 2Н2Р t, кат → СН3ОН

Этанол образуется при брожении (ферментации) углево­дов — глюкозы или крахмала:

МНОГОАТОМНЫЕ СПИРТЫ

Свойства многоатомных спиртов рассмотрим на приме­ре простейшего трехатомного спирта — глицерина, или про-пантриола-1,2,3.

Химические свойства

I. Замещение атомов водорода гидроксильных групп

1. Как и одноатомные спирты, многоатомные спирты взаимодействуют со щелочными металлами; при этом могут образовываться моно-, ди- и тризамещенные продукты:

Физические свойства

Глицерин — вязкая, бесцветная, сладковатая на вкус нетоксичная жидкость с /°кип = 290°С. Смешивается с во­дой во всех отношениях.

I. Замещение атомов водорода гидроксильных групп

1. Как и одноатомные спирты, многоатомные спирты взаимодействуют со щелочными металлами; при этом могут образовываться моно-, ди- и тризамещенные продукты:

2. Наличие нескольких ОН-групп в молекулах много­атомных спиртов обусловливает увеличение подвижности и способности к замещению гидроксильных атомов водоро­да по сравнению с одноатомными спиртами. Поэтому, в отличие от алканолов, многоатомные спирты взаимодей­ствуют с гидроксидами тяжелых металлов (например, с гидроксидом меди (II) Си(ОН)2). Продуктами этих реакций являются внутрикомплексные («хелатные») соединения, в молекулах которых атом тяжелого металла образует как обычные ковалентные связи Me—О за счет замещения ато­мов водорода ОН-групп, так и донорно-акцепторные свя­зи Me ← О за счет неподеленных электронных пар атомов кислорода других ОН-групп:

Нерастворимый в воде Си(ОН)2 голубого цвета раство­ряется в глицерине с образованием ярко-синего раствора глицерата меди (II). Эта реакция является качественной ре­акцией на все многоатомные спирты.

3. Многоатомные спирты, как и одноатомные, взаимо­действуют с органическими и неорганическими кислотами собразованием сложных эфиров:

Сложные эфиры глицерина и высших карбоновых кис­лот представляют собой жиры (см. тему «Сложные эфиры. Жиры»).

Тринитроглицерин — взрывчатое вещество и одновре­менно лекарственный препарат: 1%-й спиртовой раствор нитроглицерина применяется в медицине в качестве сред­ства, расширяющего сосуды сердца.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола

Содержание:

  • Спирты – это производные углеводородов, у которых один атом (или более) замещены на функциональную группу –ОН.

Примеры спиртов: СН3ОН (метиловый спирт), СН3-СН2-ОН (этиловый спирт).

Фенолы – это соединения, в которых содержится ароматическое ядро и непосредственно связанная с ним группа –ОН.

Общая формула этих веществ – R-OH.

Спирты

Спирты

Существует несколько классификаций спиртов по различным критериям. По характеру органических радикалов подразделяют на:

  1. предельные – CnH2n+1OH;
  2. непредельные – CnH2n-1OH и CnH2n-3OH;
  3. ароматические – CnH2n-7OH;
  4. циклические.

По числу функциональных групп –ОН:

  1. одноатомные;
  2. двухатомные;
  3. многоатомные (трехатомные, четырехатомные, пятиатомные и шестиатомные).

А также по названию углеродного атома, связанного с группой –ОН:

  1. первичные (R-CH2-OH);
  2. вторичные (R-CH(R)-OH);
  3. третичные (C(R)3-OH).

Органические соединения, которые содержат гидроксильные группы, непосредственно связанные с атомами углерода ароматического кольца называют фенолами, и это уже другой самостоятельный класс соединений.

Физические свойства одноатомных и многоатомных спиртов

Одноатомные спирты – это вещества, имеющие одну группу –ОН, а многоатомные – несколько. Физические свойства спиртов объясняются способностью образовывать межмолекулярные водородные свойства. Они имеют высокую температуру кипения, жидкое агрегатное состояние и растворимость в воде. С увеличением углеродной цепи температура возрастает, а растворимость уменьшается. Простые спирты характеризуются специфическим запахом.

Химические свойства одноатомных спиртов

Они определяются присутствием группы –ОН, а также участием α-углеродного атома первичных и вторичных спиртов.

I. Кислотные свойства

Спирты проявляют кислотные свойства, но кислотами не являются, т.к. не реагируют с гидроксидами, оксидами и солями металлов. Константа кислот меньше константы воды. Разница обусловлена влиянием радикалов – чем больше частично отрицательный заряд на группе –ОН, тем сильнее кислород удерживает свой водород и тем меньше кислотные свойства. По гомологическому ряду кислотные свойства убывают.

    Взаимодействие спиртов с щелочными и щелочноземельными металлами

2 R-OH + 2 Me → 2 R-OMe + H2

Взаимодействие с карбоновыми кислотами

R-COOH + R’-OH → R-COOR’ + H2O

Взаимодействие с магнийорганическими соединениями

Взаимодействие с неорганическими кислотами

II. Основные свойства

Основные свойства проявляются себя в реакциях с сильными кислотами, образуя оксониевые соли с дальнейшими превращениями в галогенпроизводные. R-OH + HBr → R-Br + H2O

    Взаимодействие с галогенпроизводными (фосфор)

Взаимодействие с галогенпроизводными (сера)

III. Реакции замещения

Для спиртов характерны реакции замещения атома водорода в функциональной группе –ОН.

    Этерификация Образование сложных эфиров провоцирует взаимодействие одноатомных спиртов с различными кислотами. Катализатором реакции служат сильные неорганические кислоты.

Эта реакция обратима и для смещения равновесия в сторону сложного эфира необходимо провести нагревание в присутствии концентрированной серной кислоты.

Взаимодействие спиртов с галогеноводородами Эта реакция также обратима.

R-OH + HCl → R-Cl + H2O

IV. Реакции отщепления

Для спиртов характерны реакции отщепления группы –ОН или водорода этой группы и водорода соседнего углеродного атома.

Данная реакция имеет два типа.

Одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы от другой. В ходе данной реакции образуется простой эфир. Катализатор – концентрированная серная кислота. Реакция проводится при высоких температурах.

Одна молекула отщепляется только от одной молекулы спирта. Эта реакция протекает в присутствии концентрированной серной кислоты и при нагревании.

При дегидратации несимметричных спиртов действует правило Зайцева.

Эта реакция зависит от типа одноатомного спирта.

    Дегидрирование первичных спиртов

Проводится в присутствии меди и при нагревании. Образуется альдегид.

Дегидрирование вторичных спиртов

Дегидрирование третичных спиртов

Третичные спирты не подвергаются данному типу реакций.

Дегидратация, подразумевает отщепление молекул воды.

    межмолекулярную дегидратацию

При межмолекулярной дегидратации спиртов молекула воды образуется при отщеплении атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.

В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

внутримолекулярную дегидратацию.

Внутримолекулярная дегидратация спиртов происходит так, что одна молекула воды отщепляется от одной молекулы спирта. Реакции протекает при более жестких условиях, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

Для молекулы метанола реакция дегидратации невозможно, потому что молекула содержит один атом углерода. При дегидратации метанола возможно образование только простого эфира (CH3-O-CH3).

В случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

C4H9OH = C4H8 + H2O (реакция протекает в присутствии серной кислоты при нагревании до образовании бутена – 1)

V. Окисление

Спирты хорошо горят и выделяют при этом тепло.

Эти реакции протекают в присутствии меди, хрома и других катализаторов.

Первичные спирты образуют альдегиды.

Вторичные спирты при таких же условиях образуют кетоны.

Третичные спирты не вступают в реакции окисления.

Химические свойства двухатомных спиртов (гликолей)

I. Кислотные свойства

Кислотные свойства гликолей выше, чем у одноатомных, что обусловлено отрицательным индуктивным эффектом одной группы –ОН на другую. Они способны реагировать с щелочными металлами, их оксидами и гидроксидами, но не могут с солями.

Один или оба атома водорода могут замещаться на атом металла в зависимости от условий.

II. Взаимодействие с гидроксидами тяжелых металлов

Эта реакция служит качественной реакцией на многоатомность, т.е. она характерна и для трехатомных спиртов.

III. Реакция этерификации

Сложные эфиры образуются при взаимодействии двухатомных спиртов с кислотами.

Реакция обратима и катализируется сильными неорганическими кислотами.

Химические свойства трехатомных спиртов (алкантриолей)

Главнейшим представителем является глицерин. Он входит в состав жиров и липидов. Кислотные свойства алкантриолей выше, чем у двухатомных спиртов.

Взаимодействие глицерина с азотной кислотой:

В результате реакции образуется тринитроглицерин – это масляная жидкость с большой взрывчатой силой.

Спирты применяют в органическом синтезе, при изготовлении биотоплива, растворителей, как душистое вещество в парфюмерии, как основу в алкогольной продукции и т.д.

Фенол

Фенол – это простейшее соединение класса фенолы, которое характеризуется непосредственно связью функциональной группы –ОН с бензольным кольцом. У атома кислорода есть неподеленная электронная пара, с помощью которой она проявляет положительный мезомерный эффект.

Физические свойства фенолов

Фенолы – это кристаллические вещества. Имеют плохую растворимость в холодной и хорошую в горячей воде и водных растворах щелочей. Обладают специфическим запахом. Характерна высокая температура плавления и кипения из-за способности создавать водородные связи.

Читайте также  Парапрофессиональные заболевания. Синдром больных зданий

Химические свойства фенолов

Электронная плотность на кислороде фенола уменьшается, а в ядре – увеличивается, вследствие строения соединения. Полярность связи О-Н увеличивается и возможны реакции замещения атома водорода под действием щелочей.

I. Кислотные свойства

Кислотные свойства фенолов выше, чем у спиртов. Но в отличии от них, фенолы – это слабые кислоты.

    Пропускание углекислого газа через соли фенола

Образование сложных эфиров

II. Реакция галогенирования

Функциональная группа –ОН – заместитель первого рода, поэтому она обогащается бензольное кольцо электронной плотностью. Это значит, что заместители пойдут в орто- и параположения, относительно группы –ОН.

III. Реакция нитрования

При взаимодействии фенола с азотной кислотой образуется смесь из орто- и паранитрофенолов.

А при взаимодействии фенола с нитрующей смесью образуется 2,4,6 –тринитрофенола – это опасное взрывчатое вещество.

IV. Реакция присоединения

Фенолы – это ненасыщенные соединения, поэтому для них характерны реакции присоединения.

V. Качественные реакции

Качественной реакцией на фенолы служит взаимодействие его с кислотами Льюиса. В результате образуется комплекс фиолетового цвета.

Фенолы нашли широкое применение в получении фенилформальдегидных смол, синтетических волокон, красителей и лекарств. Пикриновая кислота – это опасное взрывчатое средство.

Спирты

Карточка контроля знаний (скачать PDF 255КБ)

Спирты – производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп (ОН-), непосредственно связанных с атомом углерода в углеводородном радикале.

Классификация спиртов

Спирты классифицируются по разным структурным признакам:

1) По числу гидроксильных групп:

— одноатомные спирты – спирты, у которых имеется одна гидроксильная группа;

— многоатомные – спирты, имеющие несколько гидроксильных групп: например, двухатомные спирты (гликоли), трёхатомные спирты (глицерины) и т.д.;

2) В зависимости от насыщенности углеводородного заместителя:

— предельные (насыщенные) спирты, содержащие в молекуле лишь предельные углеводородные радикалы, например: метанол СН3ОН, этанол CH3 – CH2OH.

— непредельные (ненасыщенные) спирты, содержащие в молекуле кратные (двойные и тройные) связи между атомами углерода, например:

пропен-2-ол-1 (аллиловый спирт) CH2 = СН – CH2OH.

— ароматические спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

фенилметанол 2 — фенилэтанол

3) В зависимости от наличия или отсутствия цикла в углеводородном заместителе:

— ациклические (алифатические) спирты (этанол);

— алициклические спирты (циклогексанол).

4) В зависимости от числа заместителей при α-углеродном атоме:

У первичных спиртов гидроксильная группа находится у первого атома углерода, у вторичных — у второго и т.д.

Общая формула простых предельных (ациклических) одноатомных спиртов R — OH или CnH2n+1OH, где n – количество атомов углерода.

Номенклатура

При образовании названий спиртов к названию углеводорода, соответствующего спирту, добавляют (родовой) суффикс -ол. Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами (ди-, три , тетра- и т. д.) — их число. По радикало-функциональной номенклатуре название образуется от названия класса соединения (спирт) с добавлением названий радикалов, присоединённых к гидроксильной группе.

CH3ОН метанол (метиловый спирт)

CH2OH – CH3 этанол (этиловый спирт)

CH2OH – СН2ОН этандиол -1;2 (этиленгликоль)

CH2OH – СНОН – CH2ОН пропантриол -1;2;3 (глицерин)

В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила: углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы:

Изомерия спиртов

1) Структурная изомерия

а) Положения функциональной группы (начинается с третьего члена гомологического ряда)

пропанол-1 (пропиловый спирт) пропанол-2 (изопропиловый спирт)

б) Изомерия углеродного скелета (начинается с четвертого члена гомологического ряда)

бутанол- 1 2-метилпропанол-1

в) Межклассовая изомерия (начинается со второго члена гомологического ряда) – спирты изомерны простым эфирам:

этанол (этиловый спирт) диметиловый эфир

2) Пространственная изомерия – оптическая (зеркальная).

Например, бутанол-2 СH3 CH(OH)СH2 CH3, в молекуле которого второй атом углерода (выделен цветом) связан с четырьмя различными заместителями, существует в форме двух зеркальных изомеров.

Физические свойства спиртов

Низшие и средние члены ряда предельных одноатомных спиртов, содержащие от одного до одиннадцати атомов углерода, – жидкости. Высшие спирты (начиная с С12Н25ОН) при комнатной температуре – твёрдые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, хорошо растворимы в воде. Растворимость в воде зависит от молекулярной массы, чем она выше, тем спирт хуже растворяется воде. Так, низшие спирты (до пропанола) смешиваются с водой в любых пропорциях, а высшие практически не растворимы в ней. Например, октанол-1 растворяется лишь в пропорции 1 мл в 2 л воды. Температура кипения также возрастает с увеличением атомной массы, например, tкип.СН3ОН 65°С, а tкип.С2Н5ОН 78°С. Чем выше температура кипения, тем ниже летучесть, т.е. вещество плохо испаряется. Данные физические свойства насыщенных спиртов с одной гидроксильной группой можно объяснить возникновением межмолекулярной водородной связи между отдельными молекулами самого соединения или спирта и воды.

Этиленгликоль – типичный представитель многоатомных спиртов. Его химическая формула CH2OH–CH2OH – двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно. Растворы этиленгликоля широко применяются как антиобледенительное средство (антифризы). Раствор этиленгликоля замерзает при температуре -34 0 C, что в холодное время года может заменить воду, например для охлаждения автомобилей.

При всей пользе этиленгликоля нужно учитывать, это очень сильный яд!

Глицерин представляет собой вязкую бесцветную жидкость, сладковатую на вкус. Он очень хорошо растворим в воде, кипит при температуре 220 0 C. Его химическая формула CH2OH–СНОН–CH2OH – это трёхатомный спирт.

Строение спиртов

Спирты обладают аномально высокими температурами кипения по сравнению с алканами, простыми эфирами. Эти различия объясняются наличием межмолекулярных связей в молекулах спиртов. Атом кислорода в молекуле спирта обладает большой электроотрицательностью и оттягивает на себя электронную плотность от атома водорода, при этом на атоме водорода возникает частичный положительный заряд (δ + ), а на атоме кислорода частично отрицательный (δ — ).

Спирты

Свойства спиртов

Получение спиртов

Спирты — производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп OH.

Все спирты делятся на одноатомные и многоатомные

Одноатомные спирты

Одноатомные спирты — спирты, у которых имеется одна гидроксильная группа.
Бывают первичные, вторичные и третичные спирты:

— у первичных спиртов гидроксильная группа находится у первого атома углерода, у вторичных — у второго, и т.д.

Свойства спиртов, которые являются изомерными, во многом похожи, но в некоторых реакциях они ведут себя по-разному.

Спирт этиловый

Сравнивая относительную молекулярную массу спиртов (Mr) c относительными атомными массами углеводородов, можно заметить, что спирты имеют более высокую температуру кипения. Это объясняется наличием водородной связи между атомом H в группе ОН одной молекулы и атомом O в группе -ОН другой молекулы.

При растворении спирта в воде образуются водородные связи между молекулами спирта и воды. Этим объясняется уменьшение объёма раствора (он всегда будет меньше, чем сумма объёмов воды и спирта по отдельности).

Наиболее ярким представителем химических соединений этого класса является этиловый спирт. Его химическая формула C2H5-OH. Концентрированный этиловый спирт (он же — винный спирт или этанол) получают из разбавленных его растворов путём перегонки; действует опьяняюще, а в больших доза — это сильный яд, который разрушает живые ткани печени и клетки мозга.

Муравьиный спирт (метиловый)

При этом нужно отметить, что этиловый спирт полезен в качестве растворителя, консерванта, средства понижающего температуру замерзания какого-либо препарата. Ещё один не менее известный представитель этого класса — метиловый спирт (его ещё называют — древесный или метанол). В отличии от этанола метанол смертельно опасен даже в самых малых дозах! Сначала он вызывает слепоту, затем просто «убивает»!

Многоатомные спирты

Многоатомные спирты — спирты, имеющие несколько гидроксильных групп OH.
Двухатомными спиртами называются спирты,содержащие две гидроксильные группы (группа ОН); спирты содержащие три гидроксильные группы — трёхатомные спирты. В их молекулах две или три гидроксильные группы никогда не оказываются присоединёнными к одному и тому же атому углерода.

Многоатомный спирт — глицерин

Двухатомные спирты ещё называют гликолями, так как они обладают сладким вкусом, — это характерно для всех многоатомных спиртов

Многоатомные спирты с небольшим числом атомов углерода — это вязкие жидкости, высшие спирты — твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты.

Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:

Суть брожения заключается в том, что один из простейших сахаров — глюкоза, получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества — зимазы. Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

Читайте также  Периодизация спортивной тренировки легкоатлета

2. Гидратация этилена в присутствии серной или фосфорной кислоты

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт — глицерин

Кстати, глицерин входит в состав многих косметических средств как консервант и как средство, предотвращающее замерзание и высыхание!

Свойства спиртов

1) Горение: Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:

При их горении выделяется много теплоты, которую часто используют в лабораториях (лабораторные горелки). Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами

При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды — разлагаются на спирт и щелочь. Отсюда следует вывод, что одноатомные спирты не реагируют со щелочами!

3) Реакция с галогеноводородом
C2H5-OH + HBr —> CH3-CH2-Br + H2O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H2SO4)

В этой реакции при действии концентрированной серной кислоты и при нагревании происходит дегидратация спиртов. В процессе реакции образуется непредельный углеводород и вода.
Отщепление атома водорода от спирта может происходить в его же молекуле (то есть происходит перераспределение атомов в молекуле). Эта реакция является межмолекулярной реакцией дегидратации. Например, так:

В процессе реакции происходит образование простого эфира и воды.

5) реакция с карбоновыми кислотами:

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира — обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов.

Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные — в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.

  • — a) для первичных спиртов
  • — б) для вторичных спиртов
  • — в) третичные спирты оксидом меди не окисляются!

Что касается многоатомных спиртов, то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты, при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий — многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.

Взаимодействуют с азотной кислотой:

С точки зрения практического применения наибольший интерес представляет реакция с азотной кислотой. Образующийся нитроглицерин и динитроэтиленгликоль используют в качестве взрывчатых веществ, а тринитроглицерин — ещё и в медицине, как сосудорасширяющее средство.

Этиленгликоль

Этиленгликоль — типичный представитель многоатомных спиртов. Его химическая формула CH2OH — CH2OH. — двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.


этиленгликоль

Этиленгликоль — его растворы — широко применяются как антиобледенительное средство (антифризы). Раствор этиленгликоля замерзает при температуре -34 0 C, что в холодное время года может заменить воду, например для охлаждения автомобилей.

При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Глицерин

Все мы видели глицерин. Он продаётся в аптеках в тёмных пузырьках и представляет собой вязкую бесцветную жидкость, сладковатую на вкус. Глицерин — это трёхатомный спирт. Он очень хорошо растворим в воде, кипит при температуре 220 0 C.

Химические свойства глицерина во многом сходны со свойствами одноатомных спиртов, но глицерин может реагировать с гидроксидами металлов (например, гидроксидом меди Cu(OH)2), при этом образуются глицераты металлов — химические соединения, подобные солям.

Реакция с гидроксидом меди — типовая для глицерина. В процессе химической реакции образуетс ярко-синий раствор глицерата меди

Эмульгаторы

Эмульгаторы — это высшие спирты, эфиры и другие сложные химические вещества, которые при смешивании с другими веществами, например жирами, образуют стойкие эмульсии. Кстати, все косметические средства также являются эмульсиями! В качестве эмульгаторов часто используют вещества, представляющие собой искусственный воск (пентол, сорбитанолеат), а также триэтаноламин, лицетин.

Растворители

Растворители — это вещества, используемые в основном для приготовления лаков для волос и ногтей. Они представлены в небольшой номенклатуре, так как большинство таких веществ легко воспламенимо и вредно для организма человека. Наиболее распространённым представителем растворителей является ацетон, а также амилацетат, бутилацетат, изобутилат.

Есть также вещества, называемые разбавители. Они, в основном применяются вместе с растворителями для приготовления различных лаков.

Химия, Биология, подготовка к ГИА и ЕГЭ

Свойства спиртов

Все органические соединения, имеющие одну или несколько групп -OH, относят к спиртам:

R — OH

Классификация спиртов:

1) Спирты подразделяют на одно- и многоатомные — по количеству гидроксильных групп (-групп -OH);

2)Еще одна классификация — по атому С, к которому крепится группа -OH: первичные, вторичные и т.д.

Номенклатура

или как правильно все это назвать

Для одноатомных спиртов

I Вариант номенклатуры: общее название: название R + “-ол” (метанол)

1. Углеродная цепь нумеруется с того края, к которому ближе -OH группа

2. Положение -OH группы указывается после окончания “- ол”

3. “Внутри”радикала правила номенклатуры те же, что и в углеводородах

II Вариант номенклатуры: название радикала + “-овый” + “спирт”
(метиловый спирт, бутиловый спирт, изобутиловый спирт)

Для многоатомных спиртов:

положение -OH групп + “-ди” + ”три”… + “-ол”

Изомерия спиртов

1. Структурная изомерия

Начиная с С3 — изомерия положения гидроксильной группы:

Начиная с С4 — углеродного скелета

2. Межклассовая изомерия — у спиртов и простых эфиров одна и та же общая формула:

Физические свойства спиртов:

Все спирты С1-С11- жидкости, т.к. для них возможно межмолекулярное взаимодействие — водородная связь:

    У них “алкогольный вкус” и они хорошо растворимы в воде

С С12 спирты становятся твердыми веществами

Соответственно, растворимость уменьшается

Химические свойства спиртов

Химические свойства определяются двумя частями молекул спиртов: радикала R и -OH-группы.

С R все просто: у него химические свойства соответствующего углеводорода.
А с группой -OH картина следующая:

Схема отражает общие реакции и свойства спиртов.

Давайте рассмотрим их поподробнее:

Во-первых, реакционная способность у спиртов различная:

1. Кислотные свойства спиртов: кислотные свойства — это как раз способность отщеплять водород H.
Поэтому спирты взаимодействуют с металлами и щелочами:

  • с металлами реакция идет бурно, т.к. выделяется газообразный водород;
  • с щелочами — еле-еле, т.к. алкоголяты — соли спиртов довольно хорошо гидролизуются:

  • многоатомные спирты реагируют точно так же:

Качественная реакция на многоатомные спирты:

  • реакции образования эфиров — как простых, так и сложных, называются реакциями этерификации.
  • реакции окисления обычно не имеют каких-либо «подводных камней», за исключением того, что в части С (ЕГЭ) их надо уравнивать методом полуреакций.
  • «предельное окисление» спиртов — реакция горения:

2. Основные свойства спиртов (отщепление -OH-группы):

Здесь тоже разная реакционная способность:

третичные > вторичные > первичные > метанол

  • дегидратация: внутримолекулярная (180 С, образование алкенов)
  • дегидратация: межмолекулярная (140 С, образование простых эфиров)

Получение спиртов

К специальным методам можно отнести:

  • получение из глюкозы
  • получение метанола из водорода и угарного газа
  • в ЕГЭ это вопрос А14Свой­ства предельных од­но­атом­ных и мно­го­атом­ных спиртов, фенола
  • в ГИА (ОГЭ) это B2— Пер­во­на­чаль­ные сведения об ор­га­ни­че­ских веществах: кис­ло­род­со­дер­жа­щих веществах: спиртах

Обсуждение: «Свойства спиртов»

Лолита Витальевна, помогите пожалуйста разобраться! Как будет протекать внутримолекулярная дегидратация такого вот спирта:

Как применить правило Зайцева? По идее тут может образоваться как гексен-2, так и гексен-3.

Да, тут возможен и гексен-2, и гексен-3 — по правилу Зайцева.
Обычно в реальных процессах так и происходит — образуется смесь изомеров.
Это вопрос из ЕГЭ? Обычно там стараются давать вопросы с однозначным ответом…

Нет, это вопрос не из ЕГЭ. Просто мне стало интересно, как будет применяться правило Зайцева, если выделить самый негидрогенизированный атом углерода нельзя.
Спасибо за ответ!

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: