Определение расстояний до звезд и планет - ABCD42.RU

Определение расстояний до звезд и планет

Как определить расстояние до звёзд

Смотря на мерцающее ночное небо, нам кажется, что расстояние до звёзд не такое уж большое. А сами они малюсенькие точки во Вселенной. Однако это лишь видимость. По правде говоря, маленькими светила не назовёшь, а дистанция между нами, как громадная пропасть. Кроме того, расстояние между самими звездами также неимоверно огромное. Разумеется, для нашего понимания, но не для космического пространства.
Что интересно, в древние времена люди считали, что все небесные тела одинаково удалены друг от друга. Но благодаря изучению космоса, со временем, взгляды изменились.

звёзды в космосе

В чём измеряется расстояние между звездами

Действительно, интересно какими единицами астрономы измеряют расстояние до звезд?
На самом деле, расстояние до звезд, как и до любых других космических тел, измеряется не в привычных нам километрах, а в световых годах или парсеках.
Световой год подразумевает пройденное световым лучом расстояние за один год, при условии, что его скорость равна 300 тысяч км в секунду. Только представьте, один световой год соответствует 9,5 миллионам миллионов километров. Очевидно, что применение метров и километров при определении дистанций между звездами и расстоянии от Земли до них, очень-очень сложно и проблематично.
Хотя часто степень удалённости астрономических объектов настолько велик, что использование световых лет также неудобно. Поэтому для сокращения используют такую единицу измерения как парсек. Он равняется 3,26 светового года. Помимо этого, за единицу измерения могут использовать мегапарсек, который в один миллион раз больше обычного (то есть составляет 3 260 000 световых лет).

Летящая звезда

Методы и способы определения расстояния до звезд

Всегда и во всём человек ищет свойства, характеристики и отличительные черты. На сегодняшний день, мы способны рассчитать любой отрезок, применяя практические и теоретические приёмы.
А вот как определяют расстояние до звезд? Для этого чаще всего используют метод параллакса.
Параллакс — это изменение видимого положения объекта в отношении удалённого фона, которое напрямую зависит от положения наблюдателя.
В случае определения расстояния до звезд, наблюдение проводят с двух сторон от Солнца на протяжении 6 месяцев друг от друга. В результате полученное смещение светила даёт возможность оценивать дистанцию до него.
Что интересно, если бы звёздное тело было бы удалено от нашей планеты на 3,26 световых года или на 1 парсек, то его параллакс составлял бы 1 секунду дуги. Но, наверное, к счастью, нет ни одного настолько близко расположенного звёздного тела к нам.

расстояние до звезды

Другие способы определения расстояния до звёзд

Конечно, существуют и другие подходы. Так, например, определить расстояние до звезд можно с помощью фотометрического метода. При нём измеряют освещённость, которая возникает одинаковыми по силе и мощности источниками. Именно полученное значение освещённости обратно пропорциональна квадратам до удалённости тел друг от друга.
Помимо этого, определение расстояний до звезд возможно методом анализа спектра объектов. Для этого проводится исследование химического состава и физических характеристик, а также изучение спектров тела.

Итак, мы узнали в каких единицах измеряется и как определяют расстояние до звёзд.
Как известно, Солнце является самой близкой к нам звездой. Поэтому часто путь к нему указывают в км (149,6 млн км), что в переводе на световые года равно 8,3 световой минуте.
Как вы понимаете, расстояние между звездами и планетами нашей Солнечной системы имеет внушительные показатели. Например, степень удалённости планеты Плутон от Земли равна приблизительно 5 световым часам, а следующее близлежащее к нам светило (Проксима Центавра) располагается на расстоянии 4,2 световых года.

Проксима Центавра (одна из самых маленьких звёзд)

Представляете, сколько уже известно и доступно для нас, а сколько ещё предстоит узнать про нашу Вселенную!

Реферат: Определение расстояний до звезд и планет

Определение расстояний до космических объектов. 3

Определение расстояний до планет. 4

Определение расстояний до ближайших звезд. 4

Метод параллакса. . 4

Фотометрический метод определения расстояний. . 6

Определение расстояния по относительным скоростям. . 7

Цефеиды. . 8

Список литературы. 9

Вступление.

Наши знания о Вселенной тесно связаны со способностью человека определять расстояния в пространстве. С незапамятных времен вопрос «как далеко?» играл первостепенную роль для астронома в его попытках познать свойства Вселенной, в которой он живет. Но как бы ни было велико стремление человека к познанию, оно не могло быть осуществлено до тех пор, пока в распоряжении людей не оказались высокочувствительные и совершенные инструменты. Таким образом, хотя на протяжении веков представления о физическом мире непрерывно развивались, завесы, скрывавшие верстовые столбы пространства, оставались нетронутыми. Во все века философы и астрономы размышляли о космических расстояниях и усердно искали способы их измерения. Но все было напрасно, так как необходимые для этого инструменты не могли быть изготовлены. И, наконец, после того как телескопы уже в течение многих лет использовались астрономами и первые гении посвятили свой талант изучению богатств, добытых этими телескопами, настало время союза точной механики и совершенной оптики, который позволил создать инструмент, способный разрешить проблему расстояний. Барьеры были устранены, и многие астрономы объединили свои знания, мастерство и интуицию с целью определить те колоссальные расстояния, которые отделяют от нас звездные миры.

В 1838 году три астронома (в разных частях света) успешно измерили расстояния до некоторых звезд. Фридрих Вильгельм Бессель в Германии определил расстояние до звезды Лебедь 61. Выдающийся русский астроном Василий Струве установил расстояние до звезды Веги. На мысе Доброй Надежды в Южной Африке Томас Гендерсон измерил расстояние до ближайшей к Солнцу звезды – альфа Центавра. Во всех названных случаях астрономы измеряли невообразимо малое угловое расстояние, чтобы определить так называемый параллакс. Их успех был обусловлен тем, что звезды, до которых они измеряли расстояния, находились относительно близко к Земле.

Определение расстояний до космических объектов.

В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.), величина которой по радиолокационным измерениям известна со среднеквадратичной погрешностью 0,9 км. и равна 149597867,9 ± 0,9 км. С учетом различных изменений а. е. Международный астрономический союз принял в 1976 году значение 1 а. е. = 149597870 ± 2 км.

Определение расстояний до планет.

Среднее расстояние r планеты от Солнца (в долях а. е.) находят по периоду ее обращения Т :

где r выражено в а. е., а Т – в земных годах. Массой планеты m по сравнению с массой солнца mc можно пренебречь. Формула следует из третьего закона Кеплера (квадраты периодов обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца).

Расстояния до Луны и планет с высокой точностью определены также методами радиолокации планет.

Определение расстояний до ближайших звезд.

Метод параллакса.

Вследствие годичного движения Земли по орбите близкие звезды немного перемещаются относительно далеких «неподвижных» звезд. За год такая звезда описывает на небесной сфере малый эллипс, размеры которого тем меньше, чем звезда дальше. В угловой мере большая полуось этого эллипса приблизительно равна величине максимального угла, под каким со звезды видна 1 а. е. (большая полуось земной орбиты), перпендикулярная направлению на звезду. Этот угол (p), называемый годичным или тригонометрическим параллаксом звезды, равный половине ее видимого смещения за год, служит для измерения расстояния до нее на основе тригонометрических соотношений между сторонами и углами треугольника ЗСА, в котором известен угол p и базис – большая полуось земной орбиты (см. рис. 1).

Расстояние r до звезды, определяемое по величине ее тригонометрического параллакса p, равно:

r = 206265»/p (а. е.),

где параллакс p выражен в угловых секундах.

Для удобства определения расстояний до звезд с помощью параллаксов в астрономии применяют специальную единицу длины – парсек (пс). Звезда, находящаяся на расстоянии 1 пс, имеет параллакс, равный 1». Согласно вышеназванной формуле, 1 пс = 206265 а. е. = 3,086·10 18 см.

Наряду с парсеком применяется еще одна специальная единица расстояний – световой год (т. е. расстояние, которое свет проходит за 1 год), он равен 0,307 пс, или 9,46·10 17 см.

Читайте также  Сельское хозяйство мира

Ближайшая к Солнечной системе звезда – красный карлик 12-й звездной величины Проксима Центавра – имеет параллакс 0,762, т. е. расстояние до нее равно 1,31 пс (4,3 световых года).

Нижний предел измерения тригонометрических параллаксов

0,01», поэтому с их помощью можно измерять расстояния, не превышающие 100 пс с относительной погрешностью 50%. (При расстояниях до 20 пс относительная погрешность не превышает 10%.) Этим методом до настоящего времени определены расстояния до около 6000 звезд. Расстояния до более далеких звезд в астрономии определяют в основном фотометрическим методом.

Как астрономы определяют расстояние до звезд и галактик?

В повседневной жизни измерение расстояния от одной точки до другой не вызывает сложностей. При этом используются разные привычные для нас единицы. Услышав, например, цифру 100 м, каждый может мысленно представить, сколько это. Чтобы узнать расстояние между объектами в астрономии, ученые задействуют целый комплекс методов.

Небесные тела в пределах Солнечной системы

Астрономы редко оперируют километрами. Сказать, что расстояние от Земли до Луны 384,4 тыс. км еще можно, но с другими объектами цифры становятся намного длиннее. Для измерения расстояния в пределах Солнечной системы используют специальную астрономическую единицу – au (а. е.).

Она соответствует размеру большой полуоси орбиты Земли и одновременно дистанции между Землей и Солнцем. В 2012 астрономический союз решил определить точное число для а.е. – 149 597 870 700 метров. Удобство использования единицы состоит в том, что при измерении расстояний до объектов можно сравнивать их с удаленностью планеты от Солнца. Например, расстояние от Земли до Урана – около 20 а. е.

Схема параллакса

Чтобы узнать расстояние к относительно близко расположенным объектам (несколько а. е.), используют метод радиолокации. Он отличается высокой точностью. Необходимо знание нескольких параметров: скорости света, движения тела и Земли. Радиотелескоп отправляет сигнал, который отражается от поверхности тела и возвращается на Землю. Время прохождения луча туда и обратно позволяет вычислить расстояние к объекту.

Если небесное тело более удаленное от Земли, то расстояние к нему измеряется методом горизонтального параллакса. Параллакс – это изменение видимого расположения тела по отношению к удаленному фону в зависимости от того, где находится наблюдатель. Выделяют несколько параллаксов, которые нашли применение в астрономии.

Метод горизонтального параллакса состоит в следующем. Находясь в одной точке Земли, отмечают положение объекта на небе относительно более далеких звезд. Затем перемещаются в другую точку планеты и снова отмечают положение небесного тела.

Расстояние между точками наблюдения известно, как и углы между поверхностью и объектом. В результате получается условный равнобедренный треугольник. В качестве основания используется диаметр земной орбиты.

Измерение расстояний до далеких объектов

Для еще более отдаленных объектов даже использование астрономических единиц непрактично. Поэтому астрономы выражают расстояния в световых годах (1 световой год равен 9,46 х 10 15 м), а еще чаще – в парсеках (1 парсек равен 3,2616 светового года).

Измерение расстояния при помощи параллакса

Если нужно узнать точное расстояние до звезды, и предполагается, что оно не превышает несколько десятков световых лет, используют метод годичного параллакса. Расположение тел в пределах Солнечной системы измеряют относительно дальних звезд. А определение расстояния до этих самых звезд происходит при помощи сравнения их с другими галактиками.

Методика измерения расстояния остается прежней – необходимо переместиться из одной точки земной поверхности в другую, чтобы узнать угловое перемещение звезды. Однако размеры Земли слишком маленькие относительно звезд.

Для удобства и более точных измерений наблюдатель остается в одной и той же точке, но замеры делаются с промежутком в полгода. За 6 месяцев Земля, обращаясь вокруг Солнца, перейдет в противоположную точку орбиты, а исследователь получит максимальное расстояние между двумя точками. Чем меньшим окажется параллакс, тем больше парсеков до звезды.

Измерить расстояние к телам за пределами Млечного Пути можно лишь приблизительно. Ученые ориентируются на яркость звезд-цефеид, вспышки сверхновых и сравнивают их с другими уже известными объектами. А расстояние до далеких галактик, где не видны звезды, определяется путем наблюдений за смещением линий в их спектрах.

Измерение расстояний до звезд и галактик имеет определенную последовательность. Для близко расположенных объектов используют методы радиолокации и параллакса. Для дальних – оценивают свечение и изменение спектра тел.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Откуда нам известно расстояние до звезд и как их измеряют

Мы знаем, что ближе всех звезд к Земле находится Солнце. Если говорить об объектах за пределами Солнечной системы, то на первом месте по приближенности среди звезд стоит Проксима Центавра и система Альфа Центавра. Но как мы это узнали?

Первые люди не особо интересовались звездами, так как считали космическое пространство статичным куполом, где небесные светила намертво прикреплены над Землей. Но затем древние мудрецы догадались, что мир намного сложнее, чем казалось изначально.

Например, астроном из Древней Греции Аристарх Самосский в III веке до н.э. постарался определить удаленность Солнца. Он посчитал, что звезда должна располагаться в 20 раз дальше Луны (современный показатель в 20 раз больше). Более современные цифры предоставил астроном Жак Доминик Кассини в 1672 году, использовав момент противостояния Марса (140 млн. км).

Визуализация метода параллакса

Долгое время ученым приходилось пользоваться движением Венеры, чтобы понять параметры Солнечной системы. Так возникли крупные международные проекты, где ученые со всего мира объединяли наблюдения и выводили дистанции к космическим объектам. Но как же исследователи измеряют эти расстояния?

Самым простым и первым методом стал параллакс (триангуляция). Вы можете не знать о нем, но постоянно наблюдаете эффект в обычной жизни. Вспомните, как ехали в машине, поезде или маршрутке. Вы могли заметить, с какой быстрой скоростью мелькают приближенные предметы (вроде столбов и людей) на фоне более удаленных (горы, облака и т.д.). Вывод простой: параллактическое смещение для близких объектов намного значительнее и примечательнее.

Параллакс рассчитывается в виде уравнения. Вам потребуется база (измерение двух углов и одного расстояния) и знания по тригонометрии, чтобы вычислить длину одного из катетов в прямоугольном треугольнике. Чем длиннее база, тем более весомыми станут параллактические смещения и углы.

При переходе из одного конца базы в другой меняется видимое направление на точку. Сдвиг объекта на фоне далеких небесных тел называют параллактическим смещением. Что земной наблюдатель возьмет в качестве базы? Это диаметр земной орбиты вокруг Солнца.

Сложнее всего было применить параллакс к более удаленным звездам. Прорыв случился лишь в XIX веке, когда угломерные приборы стали достаточно точными. Удача улыбнулась Василию Струве, который в 1837 году впервые опубликовал значение параллакса звезды Вега – 0.12 угловой секунды. Дальше последовали наблюдения от Фридриха Бесселя для звезды 61 Лебедя – 0.3’’.

Расстояния в методе параллакса для других звезд стали измерять в парсеках (1 парсек = 3.26 световых года). Это стартовая точка отсчета, где именно с такого расстояния радиус орбиты нашей планеты просматривается под углом в 1 секунду. Если хотите вычислить дистанцию к звезде в парсеках, то используйте простую формулу, в которой 1 делится на звездный параллакс в секундах.

Метод прекрасно срабатывает, если измеряете дистанции не дальше 100 парсек (метод параллакса сталкивается с барьером в виде земной атмосферы). Но ведь Вселенная бесконечна. Как увидеть более далекие объекты? Здесь выручают фотометрические методы, появившиеся с развитием фотографии, и переменные звезды (цефеиды). Первой добиться успеха удалось астроному Генриетте Левитт. Она изучала звездный блеск на фотометрических пластинках, используя цефеиды на территории Малого Магелланова Облака. Ей удалось понять, что с яркостью звезды увеличивается и период колебания блеска.

Благодаря яркости и видимости цефеид можно отследить объекты рядом с ними. Если вспомнить о связи периодичности и яркости, то в виде цефеид получим полезный инструмент для расчетов масштабов Вселенной.

Но измерить дистанцию к ближайшей цефеиде сложно, так как она отдалена на 130 парсек. Поэтому возникла схема «лестницы расстояния», где промежуточным этапом стали рассеянные скопления звезд, где звездные объекты характеризуются общим временем формирования. Составление графика с показателем температуры и яркости привел к выведению линии главной последовательности. Все звезды в скоплении отдалены от Земли почти на единую дистанцию, поэтому их видимый блеск позволил вычислить меру светимости.

Читайте также  Типы и виды менеджмента

Нужно было определить точную дистанцию хотя бы к одному скоплению, чтобы сделать «подгонку главной последовательности». В этом помогли Плеяды и Гиады. После этого уже провели лестницу к ближайшим цефеидам.

Плеяды – открытое скопление, вмещающее 3000 звезд и удаленное на 400 световых лет (120 парсеков). Среди имен: Семь Сестер, NGC 1432/35 и M45.

Точность измерения повышается, если вы наблюдаете за звездами не с Земли, а хотя бы на орбите. Поэтому в 1989 году стартовал спутник Hipparcos, с помощью которого умели представить астрономический каталог из 120 звезд с годичными параллаксами.

Если хотите продвинуться еще дальше, то не обойтись без красного смещения. Возникновению метода обязаны астроному Весто Слайферу, который при исследовании галактических спектров заметил, что многие линии смещены в красную сторону по отношению к наблюдателю. Далее за развитие темы взялся Эдвин Хаббл, который вывел постоянную Хаббла и понял, что галактики удаляются (скорость удаления пропорциональна дистанции к галактике), а Вселенная расширяется.

В современном мире именно метод красного смещения позволяет определить дистанции к далеким галактикам. Конечно, не будем забывать о том, что сейчас ученые располагают более продвинутыми технологиями наблюдения и спутниками на орбите, так что дистанции к звездам все время уточняются. Например, последняя миссия Gaia должна точно измерить параллакс, собственную и радиальную скорость для 1 млрд. звезд.

Расстояния в космосе

Все когда-либо путешествовали, затрачивая конкретное время на преодоление пути. Какой же бесконечной казалась дорога, когда она измерялась сутками. От столицы России до Дальнего Востока – семь дней езды на поезде! А если на этом транспорте преодолевать расстояния в космосе? Чтобы добраться до Альфа Центавра поездом потребуется всего-то 20 млн. лет. Нет, лучше на самолёте – это в пять раз быстрее. И это до звезды, находящейся рядом. Конечно, рядом — это по звёздным меркам.

Расстояние до Солнца

Расстояния до ближайших объектов

Мы мало задумываемся о расстояниях, когда смотрим прямые трансляции из дальних уголков земного шара. Телевизионный сигнал приходит к нам практически мгновенно. Даже с нашего спутника, Луны, радиоволны долетают до Земли за секунду с хвостиком. Но стоит заговорить об объектах более дальних, и тотчас приходит удивление. Неужели до такого близкого Солнца свет летит 8,3 минуты, а до ледяного Плутона – 5,5 часов? И это, пролетая за секунду почти 300 000 км! А для того, чтобы добраться к той же Альфе в созвездии Центавра, лучу света потребуется 4,25 года.

Даже для ближнего космоса не совсем годятся наши, привычные, единицы измерения. Конечно, можно проводить измерения в километрах, но тогда цифры будут вызывать не уважение, а некоторый испуг своими размерами. Для нашей Солнечной системы принято проводить измерения в астрономических единицах.

Теперь космические расстояния до планет и других объектов ближнего космоса будут выглядеть не так страшно. От нашего светила до Меркурия всего 0,387 а.е., а до Юпитера – 5,203 а.е. Даже до самой удалённой планеты – Плутона – всего 39,518 а.е.

До Луны расстояние определено с точностью до километра. Это удалось сделать, поместив на его поверхность уголковые отражатели, и применив метод лазерной локации. Среднее значение расстояния до Луны получилось 384 403 км. Но Солнечная система простирается гораздо дальше орбиты последней планеты. До границы системы целых 150 000 а. е. Даже эти единицы начинают выражаться в грандиозных величинах. Тут уместны другие эталоны измерений, потому что расстояния в космосе и размеры нашей Вселенной – за границами разумных представлений.

Средний космос

Быстрее света в природе ничего не бывает (пока не известны такие источники), поэтому именно его скорость была взята за основу. Для объектов, ближайших к нашей планетной системе, и для удалённых от неё, принят за единицу путь, пробегаемый светом за один год. До границы Солнечной системы свет летит около двух лет, а до ближайшей звезды в Центавре 4,25 св. года. Всем известная Полярная звезда расположилась от нас на удалении в 460 св. лет.

Каждому из нас мечталось отправиться в прошлое или будущее. Путешествие в прошлое вполне возможно. Нужно лишь взглянуть в ночное звёздное небо – это и есть прошлое, далёкое и бесконечно далёкое.

Наша галактика имеет размер в поперечнике 100 000 св. лет, а толщину около 1 000 св. лет. Представить такие расстояния невероятно трудно, а оценить их практически невозможно. Наша Земля, вместе со своим светилом и другими объектами Солнечной системы, обращается вокруг центра галактики, за 225 млн. лет, и делает один оборот за 150 000 св. лет.

Дальний космос

Расстояния в космосе до далёких объектов измеряют, используя метод параллакса (смещения). Из него вытекла ещё одна единица измерения – парсек Парсек (пк) — от параллактической секундыЭто та дистанция, с которой радиус земной орбиты наблюдается под углом в 1″. . Величина одного парсека составила 3,26 св. года или 206 265 а. е. Соответственно, есть и тысячи парсек (Кпк), и миллионы (Мпк). А самые дальние объекты во Вселенной будут выражаться в расстояниях миллиард парсек (Гпк). Параллактическим способом можно пользоваться для определения расстояний до объектов, удалённых не далее 100 пк, большие расстояния будут иметь очень значительные погрешности измерений. Для исследования далёких космических тел применяется фотометрический метод . В основе этого метода находятся свойства цефеид – переменных звёзд.

Также для определения расстояний по яркости используют сверхновые звёзды, туманности или очень большие звёзды классов сверхгигантов и гигантов. Посредством этого способа реально вычислять космические расстояния до объектов, расположенных не далее 1000 Мпк. Например, до ближайших к Млечному Пути галактик – Большого и Малого Магеллановых Облаков, получается соответственно 46 и 55 Кпк. А ближайшая галактика Туманность Андромеды окажется на удалении 660 Кпк. Группа галактик в созвездии Большая Медведица отстоит от нас на 2,64 Мпк. А размер видимой вселенной 46 миллиардов световых лет, или 14 Гпк!

Измерения из космоса

Для повышения точности измерений в 1989 году стартовал спутник «Гиппарх». Задачей спутника было определение параллаксов более 100 тысяч звёзд с миллисекундной точностью. В результате наблюдений, были вычислены расстояния для 118 218 звёзд. В их число вошли больше 200 цефеид. Для некоторых объектов изменились ранее известные параметры. Например, рассеянное звёздное скопление Плеяды приблизилось – вместо 135 пк прежнего расстояния получилось всего 118 пк.

Как можно определить расстояние до звезд: измерения по формуле в астрономии

Как определяют расстояние до звезд – вопрос, интересующий тех, кто увлекается чтением популярной литературы об астрономии, но не получил специального образования или не нашел информации для проведения расчетов. Простые методы, применяемые древними астрономами, основаны на угломерных измерениях с нескольких точек. А также формулах, в которых участвует время, вычисленная скорость движения небесных тел и перемещение наблюдателя вместе с планетой Земля. Все это позволяет определять дистанцию до близких, с точки зрения астрономии, объектов. Но вот расстояние до звёзд такими методами вряд ли возможно вычислить.

Предыстория вопроса

Поиски подходящих способов, чтобы определить расстояние до ближайшей звезды, занимали умы выдающихся ученых с незапамятных времен. Они наблюдали за звездным небом и дальними небесными объектами иногда на протяжении всей жизни. Революцией в этой отрасли человеческих знаний стало появление телескопов.

Также стоит отметить следующие факты:

  1. Накопление знаний не всегда позволяло делать выводы. А отсутствие взаимообмена сведениями приводило к одновременным открытиям в разных регионах планеты. Если бы была возможность столь широкого обмена информацией, как в сегодняшнем мире, ученым было бы проще делать открытия. Им не приходилось бы измерять различные величины на основании собственных заблуждений и приходить к неверным выводам.
  2. Первое успешное определение дистанции до звёзд состоялось в 1838 году, причем в разных частях планеты. Известный немецкий астроном Фридрих Бессель нашел, каково удаление звезды 61 Лебедя. Гениальный русский ученый В. Струве первым измерил расстояние до Веги, а британский ученый Томас Гендерсон открыл величину удаленности до Альфа Центавра.
  3. Это стало кульминацией накопленных знаний и в то же время – стартом на новой ступени астрономической науки. Проведенные измерения стали успешными только благодаря тому, что расстояние до планет относительно большое и может измеряться в банальных километрах.
  4. Но в 1838 году уже знали, как можно определить расстояние до звезд, правда, не очень дальних, путем измерения углового удаления и вычисления параллакса.
Читайте также  Товароведная характеристика и экспертиза крупы гречневой ядрица

Википедия объясняет дальнейший успех астрономов тем, что удалось объединить усилия научной общественности. Это помогло наладить систему обмена знаниями путем использования печатных изданий, а впоследствии – Всемирной информационной сети.

Однако в современной астрономии универсальный способ находить нужные цифры удаления все еще отсутствует.

При этом используются различные методы, чтобы вычислять нужные науке числа. Переход осуществляется по мере увеличения дистанции, но кратко осваивает уже имеющийся способ расчетов и позволяет сделать основание для нового.

Астрономическая единица (а. е.) пришла на смену километрам и метрам, с которыми так удобно было определяться в земных расстояниях. Также их применяли, чтобы считать дальность расположенных достаточно близко, по космическим меркам, небесных тел и планет.

Еще в отношении самых близких соседей можно использовать астрономическую единицу в качестве величины для измерения. Ее характеристика примерно стабильна, и относительно недавно (в 1976 году) она была установлена в 149597870 км, с погрешностью в 2 км.

Расстояние до планет

Но удаленность от Солнца (астрономическая единица и есть расстояние до светила), по сравнению с тем, где расположена самая близкая чужая звезда, слишком мало, чтобы мерить космическое пространство, особенно дальний космос. Поэтому возникли такие понятия, как парсек (пк) и скорость светового луча.

Их можно применять для тех объектов, которые никогда не увидеть человеческим невооруженным глазом. Да и световой год вряд ли позволит представить, например, через какое время космический корабль сможет долететь даже до ближайшей галактики.

Наиболее простое решение получила проблема определения расстояний во Вселенной, где находится человек или Солнечная система. Теперь каждый школьник может написать на эту тему реферат или провести презентацию. При этом он не будет особенно задумываться, откуда взялись эти формулы и как определялась удаленность до земного спутника и разных объектов.

Существенную помощь в определении расстояний от далеких планет до Солнца оказал Третий закон великого астронома Иоганна Кеплера. Согласно данному закону квадрат периода обращения планет соотносится, как кубы средних расстояний до центра Солнечной системы.

Сколько составляет расстояние до Луны и самого близкого желтого карлика, удалось определить с помощью метода радиолокации. И хотя для этого потребуется определенное время, но полученная цифра будет достаточно точной.

Как измеряют расстояние до звезд

Определение этих цифр происходит с помощью разных способов измерений. Выбор каждой методики осуществляется в зависимости от дальности расположения и масштаба, который нужно соблюдать при проведении измерений.

Параллакс позволяет определять на расстоянии не более 100 парсеков, но с некоторыми погрешностями (около 50 %). Чем меньше расстояние, тем меньше наблюдается неточностей. Данный метод измерения позволил выяснить дистанцию от 6 тыс. звезд. Например, от Проксимы (красного карлика) Центавра – каких-то 1,31 пк.

В основе метода лежит смещение видимых, близких звезд относительно дальних, которые визуально представляются неподвижными.

Этот оптический эффект природа дает благодаря собственно движению Земли по ее годичной орбите. Несмотря на грозное словесное описание, метод параллакса в тригонометрическом выражении выглядит довольно просто и не представляет никакой сложности в решении.

Чтобы наглядно представить себе, как это выглядит, можно посмотреть видео, которых немало снято популяризаторами. Они предназначены для просмотра теми классами, где изучают астрономию. Пример такого видео приведен ниже.

Определение расстояния

Цефеиды – звезды, размер которых позволяет их использовать в качестве ориентира. Они дают возможность узнавать расстояние по периоду пульсации и изменчивости их блеска. Наблюдение за ними показало определенную периодичность излучения, которую и используют в специальных вычислениях. Этот метод ориентирован на звездный блеск.

Его периодичность и мощность позволяет дифференцировать скопление отдельных звезд в относительно близкой галактике. Это стало возможным после изобретения суперсовременных телескопов. С помощью данного метода можно выяснить, какую цифру составляет примерная дистанция. Но его нельзя использовать для дальних галактик.

Красное смещение – тоже не очень точный метод, в котором требуется пересчет на космологическую модель. Однако он пригоден для подсчета того, чего не видит человеческий глаз. Слишком большое расстояние (10 млн. световых лет) до них должен проходить даже свет. И каково сейчас состояние этих объектов на наблюдаемой границе Вселенной, даже сложно принимать в воображении.

Определенным ориентиром в вычислениях может стать и термоядерный взрыв с выделением огромного количества энергии от сверхновых звезд (двойных с белым карликом). Здесь точность вычислений может зависеть от скорости достижения предела массы. Но чтобы понять, как можно выражать расстояние, уже нужны другие знания и особые методы обработки получаемой информации.

Фотометрический метод основан на простом понимании законов движения света. Блеск звезды или другого источника света, равного освещенности другого, означает и одинаковое расстояние. Зная, сколько свет будет лететь от одного объекта, можно вычислить, что эта величина равна дистанции до другого с аналогичной освещенностью. Считают ее по специальной формуле фотометрических расстояний.

Близкие звезды

Проведенные измерения, направленные на ближайшие, видимые звезды, и расчет времени на прохождение до них светового луча позволили определить ближайших соседей, их примерный спектр и цвет. Оптические иллюзии не всегда обозначают в точности действительно близкие по отношению к другим объектам.

Однако с Альфа Центавра и ее Проксимой дело обстоит сложно. Она находится в 270 тыс. раз дальше, чем Солнце, да и масса у нее почти в 7 раз меньше. Но, несмотря на близость, она почти не видна невооруженным глазом. Также заслуживают внимания интересные факты:

  • звезда Барнарда тоже находится относительно недалеко – почти 2 парсека, четвертая по расстоянию. Она также почти не видна на небосклоне и открыта только в начале прошлого столетия;
  • ярчайший Сириус находится в 8,6 светового года, но его можно видеть практически в любом полушарии. И хотя он не так близок, как звезда Барнарда и Проксима, но хорошо виден благодаря своей яркости;
  • Полярная звезда, которую можно обнаружить рядом с Большой Медведицей, находится в более чем 447 световых лет. Несмотря на целых 137 парсеков, она видна намного лучше, чем Проксима и другие звезды. Потому что она сверхгигант, представляющий собой тройную звездную систему.

Полярная звезда – интересный феномен природы, как будто кем-то оборудованный для ведения землянами расчетов и наблюдений. Ее высота над горизонтом равна широте земной поверхности, с которой в данный момент ведется наблюдение.

А если нужно идти на север, то оно практически всегда совпадает с направлением, взятым на сверхгиганта.

Неудивительно, что древние мореплаватели придавали ей особый смысл. Хотя это не мистический, а физический объект, расположенный на огромном расстоянии. Вполне вероятно, что закономерность была случайной, обусловленной циклическим совпадением движения, а видимая сфера постоянно меняет степень освещенности. Это связывают с ее температурой, наличием старших и младших в триаде.

Фальшь, присущая визуальному впечатлению от звездного неба, легко объясняется, когда у человечества есть уже не просто минимальные, а конкретные знания. Каждое из новых достижений в изучении звездного неба и расстояний – это своеобразный тест, сдаваемый перед началом очередного этапа. Сейчас человечество прошло четыре ступени в изучении и обозначении расстояний до звезд и стоит на пороге пятого, еще более сложного этапа.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: