Особенности пьезоэлектрического эффекта - ABCD42.RU

Особенности пьезоэлектрического эффекта

Пьезоэлектрики, пьезоэлектричество — физика явления, виды, свойства и применение

Пьезоэлектрики — это диэлектрики, обладающие ярко выраженным пьезоэлектрическим эффектом.

Явление пьезоэлектричества было обнаружено и изучено в 1880 — 1881 гг. известными французскими физиками Пьером и Поль-Жаком Кюри.

Более 40 лет пьезоэлектричество не находило практического применения, оставаясь достоянием физических лабораторий. Лишь во время первой мировой войны французский ученый Поль Ланжевен применил это явление для генерирования кварцевой пластинкой ультразвуковых колебаний в воде для целей подводной локации («эхолот»).

После этого изучением пьезоэлектрических свойств кварца и некоторых других кристаллов и их практическими приложениями заинтересовался ряд физиков. Среди многих их работ было несколько, весьма важных применений.

Так, например, в 1915 г. С. Баттерворс показал, что кварцевая пластинка как одномерная механическая система, получающая возбуждение вследствие взаимодействия между электрическим полем и электрическими зарядами, может быть представлена как эквивалентная электрическая схема из последовательно включенных емкости, индуктивности и резистора.

Представив кварцевую пластинку как колебательный контур, Баттерворс впервые предложил эквивалентную схему кварцевого резонатора, которая легла в основу всех дальнейших теоретических работ по кварцевым резонаторам.

Пьезоэлектрический эффект бывает прямым и обратным. Для прямого пьезоэффекта характерна электрическая поляризация диэлектрика, наступающая вследствие действия на него внешнего механического напряжения, при этом индуцируемый на поверхности диэлектрика заряд оказывается пропорционален приложенному механическому напряжению:

При обратном пьезоэффекте явление проявляет себя наоборот — диэлектрик изменяет свои размеры под действием приложенного к нему внешнего электрического поля, при этом величина механической деформации (относительная деформация) будет пропорциональна напряженности приложенного к образцу электрического поля:

Коэффициентом пропорциональности и в том и в другом случае выступает пьезомодуль d. Для одного и того же пьезоэлектрика пьезомодули для прямого (dпр) и обратного (dобр) пьезоэффекта равны между собой. Таким образом, пьезоэлектрики — это своеобразные обратимые электромеханические преобразователи.

Продольный и поперечный пьезоэлектрический эффект

Пьезоэлектрический эффект, в зависимости от вида образца, может быть продольным или поперечным. В случае с продольным пьезоэлектрическим эффектом, заряды в ответ на деформацию или деформация в ответ на действие внешним электрическим полем, возникают в том же направлении, что и инициирующее воздействие. При поперечном пьезоэлектрическом эффекте возникновение зарядов или направление деформации окажутся перпендикулярны направлению вызывающего их воздействия.

Если на пьезоэлектрик начать действовать переменным электрическим полем, то в нем возникнет той же частоты переменная деформация. Если пьезоэффект продольный, то деформации будут носить характер сжатия и растяжения по направлению приложенного электрического поля, а если поперечный, то станут наблюдаться поперечные волны.

Если частоту приложенного переменного электрического поля сделать равной резонансной частоте пьезоэлектрика, то амплитуда механической деформации будет максимальной. Резонансную частоту образца можно определить по формуле (V — скорость распространения механических волн, h — толщина образца):

Важнейшей характеристикой пьезоэлектрического материала служит коэффициент электромеханической связи, показывающий, соотношение между мощностью механических колебаний Pа и электрической мощностью Pэ, затрачиваемой на их возбуждение посредством действия на образец. Данный коэффициент обычно принимает значение из диапазона от 0,01 до 0,3.

Для пьезоэлектриков характерна кристаллическая структура материала с ковалентной или ионной связью без центра симметрии. Материалы с низкой удельной проводимостью, в которых свободных носителей заряда пренебрежимо мало, отличаются высокими пьезоэлектрическими показателями. К пьезоэлектрикам относятся все сегнетоэлектрики, а также обилие известных материалов, в том числе кристаллическая модификация кварца.

Монокристаллические пьезоэлектрики

Данный класс пьезоэлектриков включает в себя ионные сегнетоэлектрики и кристаллическую модификацию кварца (бета-кварц SiO2).

Монокристалл бета-кварца имеет форму шестигранной призмы с двумя пирамидами по бокам. Выделим здесь несколько кристаллографических направлений. Ось Z проходит через вершины пирамид, и является оптической осью кристалла. Если вырезать пластину из такого кристалла в направлении перпендикулярном данной оси (Z), то пьезоэлектрический эффект получить не удастся.

Оси X проведем через вершины шестигранника, здесь три таких оси X. Если вырезать пластины перпендикулярно осям X, то получим образец с наилучшим пьезоэффектом. Оси X называются поэтому у кварца электрическими осями. А три оси Y, проведенные перпендикулярно боковым граням кристалла кварца — механические оси.

Данный вид кварца относится к слабым пьезоэлектрикам, его коэффициент электромеханической связи находится в пределах от 0,05 до 0,1.

Кристаллический кварц возымел наибольшую применимость в силу способности сохранять пьезоэлектрические свойства при температурах до 573°C. Пьезоэлектрические резонаторы на базе кварца — это есть ни что иное, как плоскопараллельные пластины с прикрепленными к ним электродами. Такие элементы отличаются ярко выраженной собственной резонансной частотой.

Ниобит лития (LiNbO3) — широко применяемый пьезоэлектрический материал, относящийся к ионным сегнетоэлектрикам (наравне с танталатом лития LiTaO3 и германатом висмута Bi12GeO20). Ионные сегнетоэлектрики предварительно отжигают в сильном электрическом поле при температуре ниже точки Кюри, чтобы привести их в однодоменное состояние. Такие материалы обладают более высокими коэффициентами электромеханической связи (до 0,3).

Сульфид кадмия CdS, оксид цинка ZnO, сульфид цинка ZnS, селенид кадмия CdSe, арсенид галлия GaAs и т. д. — примеры соединений полупроводникового типа с ионно-ковалентной связью. Это так называемые пьезополупроводники.

Этилендиаминтартрат C6H14N8O8, турмалин, монокристаллы сегнетовой соли, сульфат лития Li2SO4H2O — на основе этих дипольных сегнетоэлектриков также получают пьезоэлектрики.

Поликристаллические пьезоэлектрики

К поликристаллическим пьезоэлектрикам относится сегнетоэлектрическая керамика. Для придания сегнетокерамике пьезоэлектричексих свойств, такую керамику необходимо в течение часа поляризовать в сильном электрическом поле (напряженностью от 2 до 4 МВ/м) при температуре от 100 до 150°C, чтобы по завершении этого воздействия в ней осталась поляризация, позволяющая в дальнейшем получать пьезоэлектрический эффект. Так получают сильную пьезоэлектрическую керамику с коэффициентами пьезоэлектрической связи от 0,2 до 0,4.

Из пьезокерамики изготавливают пьезоэлементы требуемой формы, чтобы потом получать механические колебания необходимого характера (продольные, поперечные, изгибыне). Главные представители промышленной пьезокерамики изготавливаются на основе титаната бария, кальция, свинца, цирконата-титаната свинца, ниобата бария-свинца.

Полимерные пьезоэлектрики

Пленки полимеров (например поливинилиденфторид) вытягивают на 100-400%, затем поляризуют в электрическом поле, а после — наносят электроды путем металлизации. Так получают пленочные пьезоэлементы с коэффициентом электромеханической связи порядка 0,16.

Применение пьезоэлектриков

Отдельные и соединенные друг с другом пьезоэлементы можно встретить в виде готовых радиотехнических устройств — пьезоэлектрических преобразователей с нанесенными на них электродами.

Такие устройства, изготовленные из кварца, пьезокерамики или ионных пьезоэлектриков, служат для генерации, трансформации и фильтрации электрических сигналов. Плоско-параллельную пластинку вырезают из кристалла кварца, прикрепляют электроды — получают резонатор.

Частота и добротность резонатора зависит от угла к кристаллографическим осям, под которым вырезали пластинку. Обычно в диапазоне радиочастот до 50 МГц добротность таких резонаторов достигает 100000. Кроме того пьезоэлектрические преобразователи находят широкое применение в качестве пьезотрансформаторов с высоким входным сопротивлением, для характерно большого диапазона частот.

По добротности и частоте кварц превосходят ионные пьезоэлектрики, способные действовать на частотах до 1 ГГц. Тончайшие пластинки танталата лития применяются как излучатели и приемники ультразвуковых колебаний частотой от 0,02 до 1 ГГц, в резонаторах, фильтрах, линиях задержки на поверхностных акустических волнах.

Тонкие пленки пьезополупроводников, напыленные на диэлектрические подложки, применяются в встречно-штыревых преобразователях (чередующиеся электроды служат здесь для возбуждения поверхностных акустических волн).

Низкочастотные пьезоэлектрические преобразователи изготавливают на базе дипольных сегнетоэлектриков: миниатюрные микрофоны, динамики, звукосниматели, датчики давления, деформации, вибрации, ускорения, ультразвуковые излучатели.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Пьезоэлектрический эффект

Пьезоэлектрический эффект (сокращенно пьезоэффект) наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Пьезоэффектом могут обладать кристаллы, не имеющие центра симметрии, а имеющие так называемые полярные направления (оси). Пьезоэффектом могут обладать также некоторые поликристаллические диэлектрики с упорядоченной структурой (текстурой), например керамические материалы и полимеры. Диэлектрики, обладающие пьезоэффектом, называют пьезоэлектриками.

Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и электрическую поляризацию и, следовательно, появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными направление поляризации и знаки зарядов. Это явление называют прямым пьезоэффектом. Пьезоэффект обратим. При воздействии на пьезоэлектрик, например кристалл, электрического поля соответствующего направления в нем возникают механические напряжения и деформации. При изменении направления электрического поля на противоположное соответственно изменяются на противоположное направления напряжений и деформаций. Это явление получило название обратного пьезоэффекта.

Рисунок 1 – Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов.

Стрелками Р и Е изображены внешние воздействия – механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями – контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р – вектор поляризации.

Читайте также  Понятие убийства и его виды 3

В некоторых источниках для обратного пьезоэффекта неуместно используют термин электрострикция, относящийся к сходному, но другому физическому явлению, характерному для всех диэлектриков, деформации их под действием электрического поля. Электрострикция – четный эффект, означающий, что деформация не зависит от направления электрического поля, а ее величина пропорциональна квадрату напряженности электрического поля. Порядок деформаций при электрострикции намного меньше, чем при пьезоэффекте (примерно на два порядка). Электрострикция всегда возникает и при пьезоэффекте, но вследствие малости в расчет не принимается. Электрострикция – эффект необратимый.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением t:P = dt. Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности d называется пьезоэлектрическим модулем (пьезомодулем), и он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью: r = dE где r – деформация; Е – напряженность электрического поля. Пьезомодуль d для прямого и обратного эффектов имеет одно и то же значение.

Приведенные выражения даны в элементарной форме только для уяснения качественной стороны пьезоэлектрических явлений. В действительности пьезоэлектрические явления в кристаллах более сложны, что обусловлено анизотропией их упругих и электрических свойств. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и их характера и направления сил относительно кристаллофических осей кристалла. Пьезоэффект может возникать в результате действия как нормальных, так и касательных напряжений. Существуют направления, для которых пьезоэффект равен нулю. Пьезоэффект описывается несколькими пьезомодулями, число которых зависит от симметрии кристалла. Направления поляризации может совпадать с направлением механического напряжения или составлять с ним некоторый угол. При совпадении направлений поляризации и механического напряжения пьезоэффект называют продольным, а при их взаимно перпендикулярном расположении – поперечным. За направление касательных напряжений принимают нормаль к плоскости, в которой действуют напряжения.

Рисунок 2 – Схематичные изображения, поясняющие продольный (а) и поперечный (б) пьезоэффекты

Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, весьма незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 2,3х10 -7 мм. Незначительность величин деформаций пьезоэлектриков объясняется их очень высокой жесткостью.

Что такое пьезоэлектрический эффект

В 19 веке в 1880 году братья Кюри проводили эксперимент, во время которого происходило образование электрического разряда, когда на кварц или другие виды кристаллов оказывалось давление. В дальнейшем это явление стало известно, как пьезоэлектрический эффект. Греческое слово «пьезо» в переводе на русский язык означает сжатие. Некоторое время спустя, те же ученые открыли явление обратного пьезоэлектрического эффекта, представляющего собой механическую деформацию кристалла под действием электрического поля. Данное явление используется в электронных устройствах, где необходимо распознавание и преобразование звуковых сигналов.

  1. Физические свойства пьезоэффекта
  2. Прямой и обратный пьезоэффект
  3. Виды пьезоэлектрических материалов
  4. Использование пьезоэффекта на практике

Физические свойства пьезоэффекта

В ходе исследований было установлено, что пьезоэлектрический эффект присущ кварцу, турмалину и другим кристаллам естественного и искусственного происхождения. Перечень таких материалов постоянно растет. Если любой из этих кристаллов сжать или растянуть в определенном направлении, на отдельных гранях появятся электрические заряды с положительным и отрицательным значением. Разность потенциалов таких зарядов будет незначительной.

Для того чтобы понять природу пьезоэффекта, необходимо соединить электроды между собой и разместить их на гранях кристалла. При кратковременном сжатии или растяжении в цепи, образованной электродами, можно заметить образование короткого электрического импульса. Именно он является электрическим и физическим проявлением пьезоэффекта. Если же кристалл испытывает постоянное давление, в этом случае импульс не появится. Данное свойство кристаллических материалов широко используется при изготовлении точных чувствительных приборов.

Одним из качеств пьезоэлектрических кристаллов является их высокая упругость. По окончании действия деформирующего усилия, эти материалы без всякой инерции принимают свою изначальную форму и объем. Если же прикладывается новое усилие или изменяется приложенное ранее, в этом случае мгновенно образуется еще один токовый импульс. Данное свойство, известное как прямой и обратный пьезоэффект, успешно используется в устройствах, регистрирующих совсем слабые механические колебания.

В самом начале открытия пьезоэффекта решение такой задачи было невозможно из-за слишком незначительной силы тока в колеблющейся кристаллической цепи. В современных условиях ток может быть усилен многократно, а некоторые виды кристаллов имеют довольно высокий пьезоэффект. Ток, полученный от них, не требует дополнительного усиления и свободно передается по проводам на значительные расстояния.

Прямой и обратный пьезоэффект

Все кристаллы, рассмотренные выше, обладают качествами прямого и обратного пьезоэффекта. Данное свойство одновременно присутствует во всех подобных материалах – с моно- и поликристаллической структурой. Обязательным условием является их предварительная поляризация в процессе кристаллизации воздействием сильного электрического поля.

Для того чтобы понять, как действует прямой пьезоэффект, необходимо кристалл или керамический материал расположить между металлическими пластинами. Генерация электрического заряда происходит в результате приложенного механического усилия – сжатия или растяжения.

Величина полной энергии, полученной от внешней механической силы, составит сумму энергий упругой деформации и заряда емкости элемента. Поскольку пьезоэлектрический эффект носит обратимый характер, возникает специфическая реакция. Прямой пьезоэффект приводит к возникновению электрического напряжения, которое в свою очередь, под влиянием обратного эффекта вызывает деформацию и механические напряжения, оказывающие противодействие внешним силам. За счет этого жесткость элемента будет увеличиваться. В случае отсутствия электрического напряжения, обратный пьезоэффект тоже будет отсутствовать, а жесткость пьезоэлемента уменьшится.

Таким образом, обратный пьезоэлектрический эффект заключается в механической деформации материала – расширении или сжатии под действием приложенного к нему напряжения. Данные элементы выполняют функцию своеобразного мини-аккумулятора и применяются в гидролокаторах, микрофонах, датчиках давления, других чувствительных приборах и устройствах. Свойства обратного эффекта широко используются в миниатюрных акустических устройствах мобильных телефонов, в гидроакустических и медицинских ультразвуковых датчиках.

Виды пьезоэлектрических материалов

Основным свойством таких материалов является возможность получения электроэнергии за счет сжатия или растяжения, то есть, деформации.

Все материалы, используемые на практике, классифицируются следующим образом:

  • Кристаллы. Включают в себя кварц и другие виды природных образований.
  • Керамические изделия. Представляют собой группу искусственных материалов. Типичными представителями являются цирконат-титанат свинца – ЦТС, а также титанат бария и ниобат лития. Они обладают более ярким пьезоэлектрическим эффектом по сравнению с природными материалами.

Если сравнивать ЦТС и кварц, становится заметно, что при одной и той же деформации, искусственный элемент вырабатывает более высокое напряжение. Когда на него влияет обратный пьезоэлектрический эффект он соответственно сильнее деформируется, когда к нему приложено такое же напряжение, как и к кварцу. Благодаря своим качествам, искусственные материалы получили широкое распространение в конструкциях керамических конденсаторов, ультразвуковых преобразователей и прочих электронных устройств.

Использование пьезоэффекта на практике

Пьезоэлектрические свойства кристаллов и материалов искусственного происхождения успешно применяются в различных областях. В качестве примеров можно привести ультразвуковую дефектоскопию, позволяющую выявлять дефекты внутри металлических конструкций, электромеханические преобразователи, стабилизирующие радиочастоты, различные датчики и другие приборы.

В электротехнике широко используется обратный пьезоэлектрический эффект, связанный с деформацией кристалла под действием приложенного напряжения. В случае наложения на кристалл электрических колебаний с частотой звука, в нем возникнут колебания такой же частоты с выделением в окружающее пространство звуковых волн. Таким образом, один и тот же кристалл может быть использован не только как микрофон, но и как динамик.

Все пьезоэлектрики имеют собственную частоту механических колебаний. Они проявляются с наибольшей силой, когда совпадают с частотой подведенного напряжения. Подобное наложение колебаний известно, как электромеханический резонанс. Данное свойство позволило создать различные виды пьезоэлектрических стабилизаторов, поддерживающих постоянную частоту в генераторах незатухающих колебаний.

Точно такая же реакция наблюдается при действии механических колебаний с частотой, совпадающей с собственными колебаниями кристалла. Подобный эффект и его применение позволил создать акустические приборы, способные выделять из всей массы звуков лишь необходимые для конкретных целей.

При изготовлении приборов и устройств цельные кристаллы не используются. Они распиливаются на пластинки, имеющие строгую ориентацию с их кристаллографическими осями. Пластинки изготавливаются определенной толщины, в зависимости от того, какую резонансную частоту колебаний нужно получить. Они соединяются с металлическими слоями, и в результате происходит рождение готового пьезоэлемента.

Пьезоэлектрический эффект

Пьезоэлектрический эффект (сокращенно пьезоэффект) наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Пьезоэффектом могут обладать кристаллы, не имеющие центра симметрии, а имеющие так называемые полярные направления (оси). Пьезоэффектом могут обладать также некоторые поликристаллические диэлектрики с упорядоченной структурой (текстурой), например керамические материалы и полимеры. Диэлектрики, обладающие пьезоэффектом, называют пьезоэлектриками .

Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и электрическую поляризацию и, следовательно, появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными направление поляризации и знаки зарядов. Это явление называют прямым пьезоэффектом . Пьезоэффект обратим. При воздействии на пьезоэлектрик, например кристалл, электрического поля соответствующего направления в нем возникают механические напряжения и деформации. При изменении направления электрического поля на противоположное соответственно изменяются на противоположное направления напряжений и деформаций. Это явление получило название обратного пьезоэффекта .

Читайте также  Решение задач с помощью ортогонального проектирования


Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками Р и Е изображены внешние воздействия — механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями — контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р — вектор поляризации.

В некоторых источниках для обратного пьезоэффекта неуместно используют термин электрострикция , относящийся к сходному, но другому физическому явлению, характерному для всех диэлектриков, деформации их под действием электрического поля. Электрострикция — четный эффект, означающий, что деформация не зависит от направления электрического поля, а ее величина пропорциональна квадрату напряженности электрического поля. Порядок деформаций при электрострикции намного меньше, чем при пьезоэффекте (примерно на два порядка). Электрострикция всегда возникает и при пьезоэффекте, но вследствие малости в расчет не принимается. Электрострикция — эффект необратимый.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением t: P = dt

Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности d называется пьезоэлектрическим модулем (пьезомодулем), и он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью: r = dE
где r — деформация; Е — напряженность электрического поля. Пьезомодуль d для прямого и обратного эффектов имеет одно и то же значение.

Приведенные выражения даны в элементарной форме только для уяснения качественной стороны пьезоэлектрических явлений. В действительности пьезоэлектрические явления в кристаллах более сложны, что обусловлено анизотропией их упругих и электрических свойств. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и их характера и направления сил относительно кристаллофических осей кристалла. Пьезоэффект может возникать в результате действия как нормальных, так и касательных напряжений. Существуют направления, для которых пьезоэффект равен нулю. Пьезоэффект описывается несколькими пьезомодулями, число которых зависит от симметрии кристалла. Направления поляризации может совпадать с направлением механического напряжения или составлять с ним некоторый угол. При совпадении направлений поляризации и механического напряжения пьезоэффект называют продольным , а при их взаимно перпендикулярном расположении — поперечным . За направление касательных напряжений принимают нормаль к плоскости, в которой действуют напряжения.


Схематичные изображения, поясняющие продольный (а) и поперечный (б) пьезоэффекты

Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, весьма незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 2,3 х 10 -7 мм. Незначительность величин деформаций пьезоэлектриков объясняется их очень высокой жесткостью.

Что такое пьезоэлектрический эффект?

Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.

Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.

Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.

Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы. Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта. Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.

Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.

Прямой пьезоэлектрический эффект

Пьезоэлектрический материал (керамический или кристаллический) помещают между двумя металлическими пластинами. Для генерации электрического заряда необходимо приложить механическое усилие (сжать или разжать). При приложении механического усилия на металлических пластинах начинает скапливаться электрический заряд:

Таким образом, пьезоэлектрический эффект действует как миниатюрный аккумулятор. Микрофоны, датчики давления, гидролокаторы и другие чувствительные устройства используют этот эффект для своей работы.

Обратный пьезоэлектрический эффект

Выше упоминалось, что существует и обратный пьезоэлектрический эффект. Он заключается в том, что при приложении электрического напряжения к пьезоэлектрическому кристаллу произойдет механическая деформация тела, под которой оно будет расширяться или сжиматься:

Обратный пьезоэлектрический эффект значительно помогает при разработке акустических устройств. Примером могут послужить звуковые колонки, сирены, звонки. Преимущества таких динамиков в том, что они очень тонкие, а это делает их практически незаменимыми при использовании в мелких устройствах, например, в мобильных телефонах. Также этот эффект часто используют медицинские ультразвуковые и гидроакустические датчики.

Пьезоэлектрические материалы

Данные материалы должны производить электрическую энергию из-за механических воздействий, таких как сжатие. Также эти материалы должны деформироваться при приложении к ним напряжения.

Данные материалы условно разделяют на две группы – кристаллы и керамические изделия. ЦТС (известный как цирконат-титанат свинца), титанат бария, ниобат лития – примеры искусственных пьезоэлектрических материалов, обладающих более ярко выраженным эффектом, чем кварц и другие природные материалы.

Давайте сравним искусственно полученный цирконат-титанат свинца ЦТС и природный элемент кварц. Итак, ЦТС способен вырабатывать гораздо большее напряжение при одинаковой деформации. Соответственно при обратном эффекте он склонен к большей деформации при одном и том же напряжении. Кварц – первый известный пьезоэлектрический материал.

ЦТС производится при высоких температурах с двух химических элементов – свинца и циркония, с добавлением химического соединения под названием титанат. Химическая формула ЦТС Pb[Zr(x)Ti(1-x)]O3. Он широко используется для производства ультразвуковых преобразователей, керамических конденсаторов, датчиков и других электронных устройств. Он также имеет специфический диапазон различных свойств. Впервые был изготовлен в 1952 году в Токийском технологическом институте.

Титанат бария представляет собой сегнетоэлектрический керамический материал с пьезоэлектрическими свойствами. По этой причине титанат бария использовался в качестве пьезоэлектрического материала больше, чем другие. Титанат бария был открыт в 1941 году во время Второй мировой войны и имеет химическую формулу BaTiO3.

Ниобат лития – соединение, сочетающее в себе кислород, литий и ниобий. Имеет химическую формулу LiNbO3. Как и титанат бария, является сегнетоэлектрическим керамическим материалом.

Пьезоэлектрические устройства

Гидролокатор

Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов. Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок. В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.

На рисунке ниже показан принцип работы гидролокатора:

А принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.

Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.

Пьезоэлектрические исполнительные устройства

Ниже показана работа силового привода на основе пьезоэлектрического эффекта:

Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.

Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.

Пьезоэлектрические громкоговорители и зуммеры

Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.

Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.

Пьезо драйверы

Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.

Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:

Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя. Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.

Что такое пьезоэлектрический эффект, принцип его работы, как и где это применяется

Пьезоэлектрический эффект (пьезоэффект) наблюдается в кристаллах некоторых веществ, обладающих определенной симметрией. К наиболее распространенным в природе минералам-пьезоэлектрикам относятся кварц, турмалин, сфалерит, нефелин. Пьезоэффектом обладают некоторые поликристаллические диэлектрики с упорядоченной структурой (керамические материалы и полимеры).

Читайте также  Организация оптовой торговли

Диэлектрики, обладающие пьезоэффектом, называются пьезоэлектриками. Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механическую деформацию (как во всяком твердом теле), но и электрическую поляризацию, т.е появление на его поверхностях электрических зарядов разных знаков (рис.1а, F — действующие силы, Р — вектор электрической поляризации).

При противоположном направлении механических сил меняются знаки зарядов (рис.16). Это явление называют прямым пьезоэффектом (рис.2а).

Рис. 1. Как работает пьезоэлемент.

Рис. 2. Прямой пьезоэффект.

Эффект электрического поля соответствующего направления в нем возникают механические деформации (рис.1в). При изменении направления электрического поля соответственно изменяются деформации (рис.1 г). Это явление получило название обратного пьезоэффекта (рис.2б).

Пьезоэлектрический эффект объясняется следующим образом. В кристаллической решетке вследствие несовпадения центров положительных и отрицательных ионов имеется объемный электрический заряд.

В отсутствие внешнего электрического поля эта поляризация не проявляется,так как она компенсируется зарядами на поверхности. При деформации кристалла положительные и отрицательные ионы решетки смещаются друг относительно друга, и соответственно изменяется электрический момент кристалла, который вызывает появление потенциалов на поверхности.

Именно это изменение электрического момента и проявляется в пьезоэлектрическом эффекте. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и от характера и направления сил относительно кристаллографических осей кристалла.

Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 0,23 мкм. Незначительность деформаций пьезоэлектриков объясняется их очень высокой жесткостью.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением д:

Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности а называется пьезоэлектрическим модулем (пьезомодулем). Он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью

  • г — деформация;
  • Е — напряженность электрического поля.

Пьезомодуль а для прямого и обратного эффектов имеет одно и то же значение. Пьезоэлектрические излучатели не имеют механических контактов и состоят из керамического пьезоэлемента, закрепленного на металлическом диске (рис.З).

Вибрация диска вызвана приложенным к нему напряжением. Переменное напряжение определенной частоты создает звуковой сигнал.

Пьезоэлектрические излучатели не подвержены механическому износу элементов конструкции, имеют малое энергопотребление, у них отсутствуют электрические шумы.

С помощью пьезокерамики удается получать значительную громкость звука. Отдельные образцы пьезокерамических преобразователей могут развивать звуковое давление на расстоянии 1 м до 130 дБ (уровень болевого порога).

Рис. 3. Конструкция пьезоэлектрического излучателя.

Пьезоэлектрические излучатели выпускаются в двух модификациях:

  • “чистые” преобразователи (без схемы управления) — пьезозвонки;
  • излучатели со схемой управления (с встроенным генератором) — оповещатели.

Чтобы преобразователи первого типа генерировали звуки, необходимы сформированные управляющие сигналы (синусоида или меандр определенной частоты, указанной для конкретной модели преобразователя).

Излучатели со встроенным генератором требуют подачи только определенного уровня напряжения. Такие устройства выпускаются на номинальные напряжения от 1 до 250 В (постоянного и переменного тока).

Рис. 4. Пьезозуммер ЗП-1.

Например, пьезокерамический звонок (пьезозуммер) ЗП-1 (рис.4) состоит из двух пьезоблоков, мембрана каждого из которых выполнена в форме неглубокой тарелки с внешним диаметром 32 мм.

Тарелки сложены встречно и пропаяны по внешней границе. Пьезоэлементы в звонке скоммутированы таким образом, что при подаче переменного напряжения поверхности тарелок либо сходятся, либо расходятся, т.е. с обеих сторон звонка образуются зоны сжатия и разрежения.

Резонансная частота звонка-2 кГц. Он создает звуковое давление 75 дБ на расстоянии 1 м при напряжении на резонансной частоте 10 В.

Табл. 1. Характеристики и размеры пьезозуммеров.

Примечание: * — предназначен для работы в автоколебательном режиме.

Рис. 5. Внешний вид пьезозвонков.

Рис. 6. Типовые амплитудно-частотные характеристики пьезозвонков: ПВА-1 и ЗП-5.

Этот звонок излучает звуковые волны одинаково в оба полупространства. В табл.1 приведены параметры других пьезозвонков, внешний вид которых показан на рис.5. На рис.6 представлены типовые амплитудно-частотные характеристики пьезозвонков: ПВА-1 — рис.ба и ЗП-5 — рис.66.

Широкое распространение получили пьезокерамические звонки с акустической камерой. Их основное преимущество- большая громкость звучания при малых габаритах.

Конструкция пьезокерамического звонка с акустической камерой проста. Это — полый цилиндр, одно основание которого — пьезоблок, другое — крышка с отверстием.

Соотношение объемавнутренней полости и размера отверстия рассчитывают так, чтобы акустический резонанс камеры и механический резонанс пьезоблока были близки по частоте. Звонок излучает звук благодаря отверстию, в котором частицы воздуха имеют большую амплитуду колебаний. Внешний вид звонков такого типа показан на рис.7.

Рис. 7. Примеры звонков.

Пьезокерамические оповещатели (пьезосирены) — это звукоизлучающие устройства, предназначенные для привлечения внимания на сравнительно большом расстоянии или в условиях шумового фона.

Они представляют собой электроакустические преобразователи с встроенными генераторами звуковой частоты и питанием от источника постоянного напряжения.

Оповещатели по сравнению со звонками должны развивать большее звуковое давление. Это достигается двумя путями. Во-первых, используются повышенные напряжения питания.

Во-вторых, принимаются конструктивные меры для увеличения излучающей поверхности.

Так, чтобы превратить в оповещатель звонок с акустической камерой, нужно снабдить его рупором. Рупор — это труба с увеличивающейся площадью поперечного сечения.

В узком начале трубы находится источник звука, а широкий конец — излучающий. В оповещателях для уменьшения габаритов используются свернутые рупоры.

На рис.8 схематично изображен разрез по вертикали оповещателя со свернутым рупором. Звуковая волна от отверстия акустической камеры радиально распространяется по лабиринту, меняя направление (вверх-вниз). С каждой сменой направления поперечное сечение становится все больше.

Рис. 8. Разрез по вертикали оповещателя со свернутым рупором.

Табл. 2. Параметры распространенных оповещателей разных производителей.

В итоге, площадь излучающего кольцевого отверстия многократно превышает площадь первоначального источника звука. Пример оповещателей с рупором — ОСА-100 и ОСА-110 (рис.9). Иной способ увеличения излучающей поверхности — использование диффузора или диафрагмы.

Рис. 9. Пример оповещателей с рупором ОСА-100 и ОСА-110.

Например так, как схематично показано на рис.10. Воронкообразный диффузор своим основанием приклеивается к центру пьезоблока в точке максимальной амплитуды колебаний.

Параметры распространенных оповещателей разных производителей приведены в табл.2, а их конструктивное исполнение — на рис.11.

Рис. 10. Способ увеличения излучающей поверхности.

Рис. 11. Конструктивное исполнение распространенных оповещателей разных производителей.

Поскольку пьезоэлектрический эффект обратим, пьезоизлучатели можно использовать в качестве тензодатчиков, т.е. элементов, преобразующих толчки, удары и другие механические воздействия на них в электрические сигналы. На основе пьезоэлектрического капсюля ЗП-1 (рис.4) можно создать простое и надежное устройство охранной сигнализации.

Я применил его для контроля “состояния” входной двери в квартире, и оно автоматически включает звуковую сигнализации при любом механическом воздействии на дверь, в том числе, при ее открывании и закрывании.

Схема устройства представлена на рис. 12. Пьезодатчик фиксируется каплей клея “Супер-момент” на дверь с внутренней стороны квартиры (рис.13).

Рис. 12. Простое и надежное устройство охранной сигнализации.

Капсюль ЗП-1, служащий тензодатчиком, включается в разрыв шлейфа, подключенного к разъему Х2 (рис.12). Триггер Шмитта на элементе DD1 микросхемы К561ТЛ1 (зарубежный аналог — CD4093B) переключается пропорционально силе механического воздействия на ЗП-1. Эта микросхема имеет в своем составе 4 однотипных элемента с функцией 2И-НЕ и триггерами Шмитта.

Незадействованные входы остальных элементов (выводы 5, 6, 8, 9, 12 и 13), по правилам эксплуатации КМОП-микросхем, нужно соединить с общим проводом или питанием.

При механическом воздействии на пьезокапсюль, когда дверь открылась или закрылась, после стука по ней, задвигания щеколды или любого иного механического воздействия раздается акустический сигнал длительностью 1. 5 с в зависимости от силы механического воздействия и положения движка резистора R1.

В исходном состоянии (после включения питания) на входах элемента DD1 за счет резисторов R1 и R2 присутствует высокий уровень (логическая “1”), на выходе — низкий (“0”).

Транзистор VТ1 закрыт, и звуковой капсюль НА1 не активен. Сотрясение, вибрация и удары влияют на капсюль ЗП-1 и преобразуются с его помощью в электрический сигнал.

Триггер Шмитта реагирует на изменение входного уровня и перебрасывается в другое состояние. Транзистор VТ1 открывается, почти все напряжение питания прикладывается к звуковому капсюлю НА1, и он громко звучит с частотой примерно 1000 Гц.

А. Кашкаров, г. С.-Петербург. РМ-07-12, 08-12.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: