Особенности устройства антенны - ABCD42.RU

Особенности устройства антенны

НАЗНАЧЕНИЕ И ХАРАКТЕРИСТИКИ АНТЕНН

Антенны служат для преобразования радиоволн в переменный электрический ток и наоборот. Любая радиоантенна может работать как на прием, так и на передачу сигнала. Главные характеристики этих устройств описаны ниже.

Полоса пропускания.

Антенны проектируют и строят с учетом рабочего интервала частот — полосы пропускания. У одних конструкций она может быть шире, у других уже. Для телевидения, WiFi, мобильной связи, GPS выделяются разные радиодиапазоны.

Направленность.

Антенну называют направленной, если мощность ее излучения в одну из сторон существенно больше, чем в остальные. Для того, чтобы наглядно показать, как меняется мощность в зависимости от направления, строят диаграммы направленности.

Ненаправленные антенны одинаково действуют на все 360 градусов, их диаграмма имеет круговую форму. Радиоантенна с диаграммой направленности в форме сферы называется изотропной. Теоретически доказано, что построить ее невозможно. Тем не менее изотропный излучатель используют в качестве эталона для того, чтобы сравнивать радиоантенны и показывать, насколько хороша та или иная конфигурация.

Коэффициент усиления.

Соотношение мощностей излучения исследуемой и эталонной радиоантенн характеризуется коэффициентом усиления. Реальные антенны всегда излучают в каком-то направлении меньше, в каком-то больше. Если не оговорено иное, то в характеристиках указывают пиковый коэффициент усиления.

Для коэффициента усиления принята логарифмическая единица измерения децибел (десятая часть бела). Чтобы посчитать соотношение двух мощностей в децибелах нужно подставить их в формулу L = 10*lg(P/Pi), где L – коэффициент усиления антенны, P – мощность ее излучения, Pi — мощность изотропного излучателя при тех же условиях.

Чтобы подчеркнуть сравнение с изотропным эталоном, такие децибелы обозначают как дБи. В технических характеристиках изделий принято обозначение дБ.

Перевести децибелы в «разы» можно по формуле G = P/Pi = 10**(L/10). Далее приведены некоторые значения (дБ — «раз»):

  • 3 децибела соответствует усилению в 2 раза;
  • 6 – 4;
  • 7 — 5;
  • 10 — 10;
  • 15 — 32;
  • 20 — 100;
  • 30 — 1000.

Если к конструкции радиоантенны добавлен электронный усилитель, ее называют активной. Производители указывают коэффициент усиления таких изделий с учетом усилителя. Электронные усилители производят шумы, которые могут искажать сигнал, поэтому не рекомендуется применять их без необходимости.

Входное сопротивление.

Если входное сопротивление антенны не соответствует волновому сопротивлению кабеля (фидера), по которому она подключается, применяют согласующие устройства. ТВ-кабели в подавляющем большинстве стран (включая РФ) имеют волновое сопротивление 75 Ом. Кабели для WiFi, GSM, 3G, 4G, радио, GPS выпускают с волновым сопротивлением 50 Ом.

Производители изготавливают антенны с входным сопротивлением, согласующимся с волновым сопротивлением кабеля.

Характерный размер.

Для большинства радиоантенн это половина длины волны. Но есть исключения. Например, в конструкцию параболических антенн входит отражатель («тарелка»), диаметр которого может намного превышать длину волны.

Размеры радиоантенн WiFi. GPS, GSM, смонтированных на печатных платах, напротив, бывают существенно меньше половины длины волны благодаря применению материалов с большой диэлектрической проницаемостью. Существуют антенные поля площадью в несколько гектаров и антенны, чей размер измеряется в миллиметрах.

ВИДЫ И ТИПЫ АНТЕНН

Известно множество конструкций радиоантенн. Наиболее удачные из них стали массовыми.

Самые простые и, возможно, самые распространенные — диполь и четвертьволновая антенна. Первый состоит из двух проводников длиной около четверти волны каждый; второй — из одного проводника длиной около четверти волны. Четвертьволновую антенну часто называют «штырем». Диполь и «штырь» — это узкополосные радиоантенны с коэффициентом усиления 2 — 5 дБ.

Штыревая антенна одинаково излучает/принимает сигнал во всех направлениях в плоскости, перпендикулярной своей оси. Вдоль оси излучение отсутствует. Такие радиоантенны используют, если взаимное положение передающего и принимающего устройств все время меняется. Поэтому «штыри» часто можно видеть на автомобилях, портативных радиоприемниках, рациях, WiFi-роутерах.

Простота конструкции способствует применению и в случае относительно неподвижных объектов: знаменитая комнатная телевизионная антенна «усы» — не что иное, как диполь. Для того, чтобы нивелировать недостатки, связанные с узкой полосой пропускания, «усы» делают телескопическими, и их можно подстраивать на нужную длину волны.

В качестве уличных ТВ-антенн часто можно увидеть «волновой канал» — узкополосную направленную радиоантенну с коэффициентом усиления 5 — 12 дБ (в зависимости от модификации). Она изобретена в 1926 году Синтаро Уда и Хидэцугу Яги из Имперского университета Тохоку (Япония). Яги запатентовал изобретение, и для антенны стали использовать второе название — Яги.

В конструкции используется один активный элемент (диполь), соединенный с линией передачи. Его размер сопоставим с половиной длины волны. На одной штанге с диполем крепятся пассивные элементы:

  • рефлектор (длиннее диполя);
  • директор (короче диполя).

Основной прием (передача) «волнового канала» идет в направлении директора. Директоров может быть несколько. Добавление каждого нового элемента повышает коэффициент усиления и уменьшает угол действия (повышает направленность).

Альтернативой «волновому каналу» при приеме телевизионного сигнала служит логопериодическая антенна. Она внешне напоминает антенну Яги, но у нее другая конфигурация. Эта широкополосная радиоантенна с коэффициентом усиления 6 — 7 дБ изобретена в 1958 году Дуайтом Исбеллом и Раймондом Духамелем в Университете штата Иллинойс (США).

Логопериодическая антенна состоит из ряда активных элементов (диполей), расположенных в порядке убывания их длины. Добавление новых элементов увеличивает полосу пропускания. Пик диаграммы направленности находится со стороны более короткого диполя.

Что касается еще одной популярной конструкции — панельной антенны (патч), то она наиболее часто применяется для WiFi, GSM, 3G, 4G, GPS. Такая узкополосная направленная радиоантенна с коэффициентом усиления 5 — 10 дБ представляет собой прямоугольную (иногда эллиптическую) пластину и пластину-отражатель (экран), разделенные слоем диэлектрика.

Наибольшее распространение конструкция получила, начиная с 70-х годов 20-го века, когда панельные антенны стали массово применять на печатных платах. Длина стороны прямоугольной пластины патча сопоставима с половиной длины волны, если между пластиной и экраном находится воздух или другой материал со схожей диэлектрической проницаемостью.

Параболическую антенну можно получить из любой, поместив ее в фокус отражателя. «Тарелка» делает произвольную антенну узконаправленной, доводя коэффициент усиления до 30-40 дБ. В распоряжении ученых есть несколько гигантских отражателей с усилением 80 дБ, которые используются в составе радиотелескопов.

Полоса пропускания зависит от радиоантенны, помещенной в фокус. Спутниковая антенна — другое название, полученное из-за использования для приема спутникового ТВ.

Для того, чтобы сделать полосу пропускания шире или использовать в работе несколько диапазонов, изготавливают комбинированные конструкции — несколько в одной. Например, распространены наружные ТВ-антенны Яги для дециметровых волн, совмещенные с диполем для метровых волн.

ОБЛАСТЬ ПРИМЕНЕНИЯ АНТЕНН

В мире существует довольно много технологий и стандартов, предусматривающих передачу информации с помощью радиоволн. Передатчик формирует сигнал в заданной полосе несущей частоты с закодированной на ней информацией Приемник декодирует полученные колебания с выделением полезной информации. Практически любая информация может быть подготовлена и передана при помощи радиоволн.

Для передачи и получения сигнала нужны антенны. Причем их характеристики должны соответствовать параметрам приемопередающей аппаратуры и решаемым задачам по обмену информацией.

Чтобы подобрать радиоантенну для приема эфирного телевидения или усиления сигнала WiFi-роутера, совершенно нет необходимости изучать тонкости стандартов. На радиочастотах выделены диапазоны, а на упаковках и в описаниях антенн есть ссылки на них. В списке приведены некоторые обозначения с указанием области использования и частот диапазона в РФ:

  • CB (свободное использование, рации) – 26.965 — 27.860 МГц;
  • VHF (метровые волны, радио и телевидение) – 48.5 – 230 МГц;
  • UHF (дециметровые волны, телевидение (в том числе цифровое)) – 470 – 862 МГц;
  • FM (радио) – 85.5 – 108 МГц;
  • LPD (свободное использование, рации) — 433 — 434 МГц;
  • PMR (свободное использование, рации) — 446 МГц;
  • GPS (спутниковая система навигации) – 1.58 ГГц;
  • ГЛОНАСС (спутниковая система навигации) — 1.60 ГГц;
  • GSM (мобильная сотовая связь) – 890 — 960 МГц, 1710 — 1880 МГц;
  • WiFi (беспроводные локальные сети) – 2.4 ГГц.

Полоса пропускания радиоантенны соответствует диапазону, указанному в ее паспорте. Что касается направленности, то изготовители, как правило, предлагают направленные модели, если ожидается стационарное положение приемника и передатчика.

Направленные антенны широко применяются при усилении сигнала сотовой связи, а штыревые в WiFi ретрансляторах. Комбинации этих типов применяются в GSM репитерах и системах беспроводной сигнализации.

Коэффициент усиления тем важнее, чем дальше разнесены источник и получатель информации. Но также следует обратить внимание на коэффициент усиления, если источник сигнала имеет малую мощность.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Ликбез: основы теории по антеннам

Предисловие

В цикле статей «Ликбез по антеннам» планируется рассмотрение различного типа антенн, которые широко используются в беспроводной передачи данных. При описании антенн планируется разработка их электродинамической модели в распространенных программных пакетах, а также анализ их достоинств, недостатков и перспектив использования на беспроводных сетях будущего. В процессе прочтения данных статей читатели могут высказывать свои пожелания по дальнейшему рассмотрению тех или иных типов антенн. Все теоретические сведения будут приведены максимально наглядно без излишнего математического описания (насколько это возможно для теории антенн).

В цикле статей будет описан принцип работы, применение, реализация, а также составлены модели следующих типов антенн:

  1. Вибраторные антенны;
  2. Полосковые (patch) антенны;
  3. Антенные решетки;
  4. Антенны с бегущей волной (end-fire);
  5. Рупорные антенны;
  6. Зеркальные параболические антенны;
  7. Линзовые антенны;
  8. Вопросы согласования антенн с линиями питания.

Введение

Вся беспроводная передача данных основана на процессе распространения электромагнитного поля от источника в окружающее пространство. Антенна играет роль этого источника поля. Сам процесс излучения начинается с того, что под действием высокочастотных электромагнитных полей в излучающей системе (антенне) появляются сторонние токи и заряды. Токи и заряды в свою очередь подводятся от генератора по фидерному тракту (или фидера от слова «to feed» — питать).

Таким образом, в систему излучения электромагнитного поля входят: генератор колебаний, фидер и излучатель. Конечно, сам фидер и генератор непосредственно в излучении не участвуют (или точнее – не должны участвовать, если они правильно сконструированы), рисунок 1.

Читайте также  Физические величины и единицы их измерения


Рисунок 1 – Элементы системы излучения электромагнитного поля

Любая антенна обладает так называемым принципом «двойственности», который говорит о том, что любая антенна может быть как передающей (то есть преобразовывать волны линии передачи в расходящиеся волны окружающего пространства), так и приемной (осуществлять обратное преобразование).

Вне зависимости от реализации и вида антенны, она характеризуется следующими основными параметрами:

Диаграмма направленности (ДН). Это распределение напряженности (или энергии) поля в пространстве, показывает в каких направлениях и с какой мощностью излучает антенная система. Строится эта зависимость, как правило, в сферической системе координат. В зависимости от вида диаграммы (от того, насколько диаграмма «острая») различают изотропные антенны, слабонаправленные, высоконаправленные. От вида диаграммы направленности зависят такие важные характеристики антенны как коэффициент направленного действия (КНД) и коэффициент усилении (КУ). Ниже мы рассмотрим вид диаграммы направленности, а также КНД и КУ одной из самой простых антенн в разных плоскостях.

Коэффициент полезного действия антенны. Он должен быть достаточно высоким, а потери – малыми, именно по этой причине при реализации антенн используют металлические конструкции, обладающие высокой проводимостью и диэлектрики с малыми потерями.

Согласование линии передачи с нагрузкой. Так как и передающая и приемная антенны соединяются с линией питания, то ее входное сопротивление должно быть согласовано с волновым сопротивлением линии. Иначе будет возникать нежелательное возникновение отраженных волн, а наличие последних – это всегда уменьшение излучаемой мощности и источник дополнительных помех.

Вес и габариты. Ясно, что при реализации любого устройства нужно стремиться к получению его наименьших массогабаритных размеров, однако, отметим, что размеры антенны однозначно связаны с основной длиной волны, на которой работает антенна. Вообще в антенной технике не существует понятия «большая» и «маленькая» антенна. Размеры антенны принято характеризовать в длинах волн. Если а – это диаметр зеркала (например, зеркальной антенны), то ее размер можно записать так: это значит, что в диаметр зеркала укладывается 8 длин волн. Если такое зеркало работает в диапазоне 2.4 ГГц (длина волны 12,5 см), то его диаметр будет составлять 1 метр, а если это диапазон 900 МГц (длина волны 33 см) – то диаметр уже больше 2.5 метров.

Принцип работы передающей антенны

Рассмотрим принцип действия простейшего излучающего устройства. Если взять простую двухпроводную симметричную линию, то излучать в пространство она не будет, несмотря на то, что в ней текут токи высокой частоты, рисунок 2.


Рисунок 2 – Двухпроводная линия

Излучение будет отсутствовать за счет того, что токи I и I’ находятся в противофазе, что приводит их к взаимной компенсации. Для получения излучения можно развести концы двухпроводной линии, чтобы поля от токов I, I’ не могла компенсировать друг друга, рисунок 3.


Рисунок 3 – Разомкнутая двухпроводная линия

Такая антенна получила название симметричного вибратора. Распределение тока в вибраторе остается таким же, каким оно было на соответствующем участке двухпроводной линии. Для исследования поля, излученного антеннами из проводов, удобно представлять такую антенну в виде совокупности элементарных электрических вибраторов (ЭЭВ) малой длины (малой по сравнению с длиной волны). В пределах каждого такого элементарного вибратора амплитуду и фазу тока можно считать неизменными. В конечном итоге общее поле, излученное антенной, можно рассчитать как сумму полей, излученных отдельными элементарными вибраторами (в теории это называется принцип суперпозиции).

На практике ЭЭВ реализуется в виде диполя Герца. Это антенна является первым реализованным излучателем электромагнитных колебаний, рисунок 4.


Рисунок 4 – Диполь герца

Такой излучатель можно сделать, если на концах тонких проводов (длиной L, меньшей длины волны) установить проводящие тела с большой емкостью (например, металлические шары). Заряженные шары создают токи, которые значительно выше емкостных токов между проводами. Так обеспечивается равномерное распределение тока вдоль проводника. Отметим, что на практике диполь Герца практически не используется.

Характеристики антенны на примере симметричного вибратора

Ниже будет рассмотрена антенна (одна из самых простых в реализации) — симметричный вибратор. Назван он так потому, что напряженность поля (питающая проводник) подводится к его центру, а распределение тока по проводнику можно также считать симметричным. Сегодня существует большое количество программных пакетов, позволяющих производить электродинамических анализ различных устройств СВЧ и приборов оптического диапазона, среди них: FEKO, Microwave Studio, Ansys HFSS и др. Внешний вид и модель симметричного вибратора в программном пакете Ansys HFSS показана на рисунке 5.


Рисунок 5 – Симметричный вибратор

Cама антенна представляет собой развернутую двухпроводную линию, рассмотренную выше, в которой устанавливается режим стоячих волн.

В зависимости от того, какое отношение имеет длина вибратора L к длине волны λ, может формироваться различная геометрия диаграммы направленности. Для отношения 4L/λ=1 симметричный вибратор формирует диаграмму, показанную на рисунке 6:


Рисунок 6 – Трехмерная ДН симметричного вибратора длиной 4L/λ=2

Та же самая диаграмма, только нормированная и в вертикальной плоскости полярной системы координат:

Очевидно, что в горизонтальной плоскости диаграмма направленности будет иметь форму шара. Для наглядности вы можете себе представить, что посмотрите на трехмерный вид рисунка 6 сверху (на плоскость Phi).

Если отношение длины вибратора и длины волны 4L/λ=2, что соответствует увеличению частоты колебаний в 2 раза, то диаграмма направленности становится более «плоской» в вертикальной плоскости и как следствие имеет более высокий коэффициент усиления (примерно в 1.5 раза):


Рисунок 6 – Трехмерная ДН симметричного вибратора длиной 4L/λ=1

Дальнейшее увеличение частоты колебаний приводит к расщеплению диаграммы направленности:


Рисунок 7 – Расщепление диаграммы симметричного вибратора при увеличении частоты колебаний в 3 (слева) и 5 (справа) раз

Симметричный вибратор, несмотря на простоту, очень часто присутствует в качестве частей конструкции более сложных антенн. В заключении отметим, что все конструктивные реализации антенн создаются для того, чтобы создать направленность излучения в определенном направлении (или направлениях). Можно выделить два крупных класса способов реализации направленного излучения: это геометрическое воздействие на источник излучения (например, источник помещается в фокус параболоида или перед проводящим экраном) и воздействие токами, когда группа токов, сдвинутых по фазе, образуют суммарную направленную диаграмму (примером могут служить фазированные антенные решетки).

В дальнейшем будут рассмотрены различные модели антенн, перечисленных в аннотации.

ТВ антенна. Виды и конструкция. Работа и применение. Особенности

ТВ антенна – это устройство для улучшения качества приема волн телевизионных каналов. Принятый с ее помощью сигнал передается на телевизор по коаксиальному кабелю, который обеспечивает минимальное искажение. Антенны могут использоваться для приема аналогового, цифрового либо спутникового сигнала, что зависит от их конструктивных особенностей. На данный момент на территории России самыми распространенными являются антенны аналогового телевидения. Его трансляцию ведет Останкинская башня, используя метровые и дециметровые волны.

Виды телевизионных антенн

ТВ антенна является очень распространенным устройством, поскольку практически ни один телевизор не сможет работать без антенны, за исключением тех, которые подключаются к кабельному телевидению. Различные населенные пункты имеют разную удаленность от ретранслятора. Одни дома могут быть расположены в сотнях километрах от них, а другие всего в нескольких шагах. Этот фактор напрямую влияет на мощность антенны, которая позволит принимать сигнал приемлемого качества, компенсируя удаленность.

Все ТВ антенны можно разделить на 3 категории:

  • Комнатные.
  • Уличные.
  • Спутниковые.
Комнатная ТВ антенна

Эти устройства устанавливаются внутри помещения. Они самые дешевые, а кроме этого не требуют сложного монтажа. При выборе в их пользу не придется прокладывать коаксиальный кабель на улицу, проделывая сквозное отверстие в фасадной стене или раме окна. Огромным недостатком данной конструкции является слабый сигнал. В связи с этим их устанавливают только в зонах с расстоянием до 30 км от телецентра или ретранслятора. На более дальней дистанции получаемый сигнал будет иметь сильное искажение, что не позволит просматривать качественную картинку телепередач.

Комнатные антенны также могут оснащаться усилителем сигнала. Чем дальше от ретранслятора, тем более мощный усилитель потребуется. Данные устройства по конструкции разделяют на два вида:
  • Стержневые.
  • Рамочные.
Стержневые

Это самые слабые комнатные устройства. Они имеют 2 или 4 телескопических усов-вибраторов, которые и улавливают сигналы. Их длина обычно не превышает 1 м. Они подключаются к специальной подставке, которая внутри имеет согласующий трансформатор, передающий сигнал на коаксиальный кабель и дальше на телевизор. Использование такой конструкции имеет свои преимущества. Она легкая, а благодаря телескопическим усам может компактно складываться для транспортировки.

Если ретранслятор сигнала находится близко, усы можно сделать короткими, чтобы они не занимали полезное пространство. При отдаленности телебашни их высота ставится на максимум, что позволяет компенсировать расстояние. Зачастую стержневая ТВ антенна идет в комплекте с телевизором. Большинству она известна под народным названием «рожки». Такие антенны хорошо принимают волны в метровом диапазоне. Для проведения их настройки необходимо менять не только высоту, но и расстояние между усами, для чего предусматривается их крепление с помощью шарниров. Большим недостатком стержневой антенны является отсутствие универсальной настройки. Выставив положение усов для хорошего приема одного канала, второй начнет транслироваться на экране с помехами.

Рамочные

Более или менее совершенными являются устройства рамочного типа. Они улавливают сигналы в дециметровом диапазоне. Эти устройства имеют металлический контур, выполненный в виде рамки, которая закреплена на подставке. Такое оборудование все же лучше чем стержневое, но все равно далеко от идеала. Его не получится использовать при значительной удаленности от ретранслятора или телебашни.

Уличная ТВ антенна

Более мощными являются наружные антенны для приема телевизионного сигнала. Они устанавливаются на возвышении в зонах открытой видимости. Зачастую такие антенны можно увидеть на крышах многоэтажных домов. Жители частного сектора устанавливают их на вершине высокой металлической трубы зафиксированной вертикально. В этом случае обеспечивается возвышение на 10-15 м, что позволяет компенсировать искажение волн стенами домов и ветвями деревьев. Фактически, чем больше вокруг преград для сигнала, тем на более высокое расстояние необходимо поднять антенну.

Читайте также  Основные принципы спортивной тренировки

Данные устройства бывают различной внешней конструкции, но все они разделяются на 2 вида по принципу действия:
  • Активные.
  • Пассивные.
Активная конструкция

Такая ТВ антенна имеет усилитель мощности, что позволяет принимать сигналы намного качественнее и компенсировать помехи. Подобные устройства выбираются в том случае, если ретранслятор находится далеко, а перед антенной имеются серьезные преграды рассеивающие сигналы, такие как дома, лесные массивы и линии электропередач. Также активное устройство потребуется, если установка ведется на низине, когда нет прямой видимости между источником трансляции и точкой приема.

Активные антенны могут передавать сигнал на несколько телевизоров. Для этого необходимо просто использовать специальный тройник для коаксиального кабеля. Применяемый у них усилитель требует отдельного источника питания. Для этого предусматривается понижающий блок на 12 вольт. Он подключается к коаксиальному кабелю у телевизора и подает напряжение к точке приема к усикам-вибраторам, возле которых находится скрытая в герметичном корпусе плата усилителя.

Пассивные устройства

Такие антенны стоят дешевле, но их можно выбирать только в том случае, если имеется прямая видимость без препятствий между точкой приема и оборудованием трансляции. В таких условиях использование усилителя не нужно. Жители отдельных домов могут проживать слишком близко к транслирующей башне, поэтому им нужна именно такая антенна. Но даже она может принимать сигнал с искажением от того, что он слишком сильный. В этом случае потребуется установка специального оборудования – аттенюатора. Он позволяет компенсировать этот недостаток, уменьшив силу сигнала до приемлемого для телевизора уровня.

Спутниковая антенна

Безусловно, самым лучшим оборудованием для получения телевизионного сигнала является спутниковая ТВ антенна. Она улавливает трансляцию не от расположенной на земле телебашни, а со спутника. Это массивная конструкция, которая стоит в разы дороже, чем уличные и тем более комнатные устройства. Антенна состоит из большой тарелки из металла окрашенной в белый цвет, которая выступает в роли экрана для фокусировки спутниковой трансляции. Попавшие на нее волны улавливаются конвертером, который выполнен в виде небольшой головки размером немного меньше кулака. Он настраивается на определенный спутник и принимает все телеканалы, которые тот передает. Количество конверторов на антенне отличается в зависимости от региона, но редко превышает 3 штуки.

Сигналы обычных трансляторов на земле и спутниковых отличаются, поэтому телевизор не может их воспринимать. В связи с этим между инвертором и телевизионным экраном устанавливается ресивер. Он представляет собой небольшое устройство, габариты которого немного меньше чем DVD приставки. Его задача заключается в трансформации спутникового сигнала в стандартный для телевизора.

Обычно, если в доме имеется два телевизора, то для каждого из них потребуется отдельная ТВ антенна, что обусловлено спецификой конвертера. При приеме одного канала со спутника он не может одновременно обрабатывать другой канал. Иными словами, если провести такое подключение, то все телевизоры будут показывать один телеканал.

Сравнительно недавно данная проблема была решена. Появились универсальные конвертеры, которые позволяют проводить подключение к двум телевизорам, сохранив возможность просмотра разных каналов. В их конструкции предусматривается два входа для подключения коаксиального кабеля. К сожалению, конструкция не идеальна. При выборе такого конвертера, будет использоваться одна ТВ антенна, но все равно к каждому телевизору потребуется подключить по ресиверу.

Спутниковые устройства передают на телевизор намного более качественный сигнал, чем наземные станции, поэтому пользуются большой популярностью, особенно в регионах, где трансляторы находится очень далеко. Даже вместе с очень сложным рельефом удастся смотреть телевизионные программы с идеальной картинкой, что было бы невозможно при использовании наружной антенны. Помехи при трансляции со спутника могут возникать только в случае сильной грозы или интенсивного снегопада.

Спутниковые антенны имеют массу преимуществ. Они безусловно лучше остальных видов, но у них имеется и недостаток. Помимо большей стоимости, они требуют квалифицированного обслуживания. Провести их установку самостоятельно вряд ли удастся, поскольку нужно изначально проверить качество сигнала и выставить тарелку в правильном направлении под нужным углом. Кроме этого, чтобы ресивер работал правильно, необходимо записать частоты каналов трансляции, которые периодически меняются. После прошивки можно будет просматривать все каналы на протяжении нескольких месяцев, после чего некоторые из них начнут исчезать, пока из сотен не останется всего несколько штук. Потребуется снова проводить перепрошивку. Сделать это самостоятельно сложно, потому что требуется специальный кабель и программное обеспечение с кодами каналов. Придется периодически обращаться в специализированные сервисные центры, услуги которых не бесплатны.

Если при нормальных погодных условиях спутниковая ТВ антенна начинает транслировать сигнал с помехами, то скорее всего это связано с отсутствием прямой видимости между тарелкой и спутником. Обычно это связано с разрастанием деревьев. Достаточно обрезать ветки и качество сигнала восстанавливается. Кроме этого, проблема может заключаться в изменение положения конвертера. При монтаже антенны он выставляется под правильным углом относительно расположение спутника. Если угол немного меняется, то качество приема искажается. Обычно во время сильного ветра плохо закрепленная тарелка может немного повернуться, буквально на несколько сантиметров. В этом случае требуется ее перенастройка. Это довольно сложно сделать без специального диагностического оборудования.

Антенна своими руками

Для принятия бесплатного эфирного цифрового телевещания подойдет любой приемник дециметровых волн, на вещательное качество сигнала можно повлиять тщательным выбором антенны . Если принцип работы телевизионной антенны понятен, и вы любите экспериментировать, а также экономить, то лучше сделать её своими руками. В большинстве случаев для самостоятельной разработки выбирают пассивный тип антенн, так как эти устройства не включают в себя сложных технических устройств. Но отсутствие микросхем и другой электроники не относится к активным видам улавливателей телесигнала. Независимо от того какую по технологии приемную антенну вы решили изготовить из подручных материалов, сначала необходимо самому выяснить как она работает.

Устройство и физические принципы работы антенн

Эфирный ТВ сигнал на расстояние до 60 км., передается электромагнитной волной синусоидальной формы с высокой частотой в дециметровом диапазоне, и принимается цифровой антенной.

Считывающие усы вызывают напряжение V на сердечнике антенны при протекание в них электромагнитной волны. Синусоида разделяется на 2 полупериода, в результате чего полуволны формируют разность потенциалов с разными знаками.

Принцип работы цифровой антенны

Воздействие вызванного напряжения, в замкнутом приемном контуре приводит к прохождению в нем электрического тока, из входного сигнала с сопротивлением R. Усиленный и обработанный импульс в радиоканале DVB-T2 телевизора , транслируется на дисплее в формате 16:9 видеосигналом со звуком.

Как правильно поставить антенну

Источниками передающими энергию в электромагнитной волне выступают фотоны.

Движение заряженных частиц по любой проводящей поверхности выделяет электромагнитные волны. Эти колебания всегда двух синусоидальных видов:

  1. Магнитное;
  2. Электрическое.

Они всегда перпендикулярны друг другу. Когда электрическая волна параллельна горизонту, а магнитная расположена вертикально, то волна считается горизонтальной поляризации. Соответственно в другом случае волна вертикальной поляризации.

Схема вертикальной и горизонтальной поляризации телевизионного сигнала

Таким образом расположение несимметричного вибратора транслирующего телевизионный сигнал напрямую влияет на поляризацию волны. В применении вертикально расположенный передатчик — вертикальная поляризация, горизонтально — горизонтальная поляризация. В Российской зоне охвата цифрового телевидения принято использовать именно горизонтальную поляризацию. Так как естественные и промышленные преграды создающие трудности прохождению сигнала чаще всего расположены вертикально. Поэтому на вопрос: как правильно поставить антенну? Ответ: горизонтально. Антенна своими руками создается учитывая этот факт.

Как правильно поставить антенну

Требования к конструкции телевизионных антенн

Принцип работы телевизионной антенны ставит определенные условия на её структуру при разработке, особенно во время самостоятельного исполнения:

  • обязательная установка точно по линии оси электромагнитной волны, распространяющейся от передатчика;
  • самодельная конструкция своими руками должна быть выполнена сверх тщательно и скрупулезно, из-за возможного ухудшения сигнала в местах не качественной сборки;
  • настроена в пространстве по типу поляризации;
  • перед тем как сделать антенну самому, необходимо рассчитать и убедиться в том что её конструкция будет закрыта и хорошо экранирована от побочных радиопомех, фона и шумов.

Коаксиальный экранированный кабель

Расчет антенны своими руками

Базовой физической величиной при самостоятельном расчете и создание цифровой ТВ антенны берется длина электромагнитной волны излучения. Так как она оказывает большое влияние на свойства и работу телевизионного эфира . А соответственно от неё зависят конструкция и размеры антенны.

Узнать F для любого региона России можно в разделе — Карта зоны покрытия цифрового телевидения . Далее высчитываем амплитуду А полученной волны — λ / 4, и используем результат для того чтобы сделать правильное приемное устройство.

Как сделать мощную антенну своими руками

Из любого металла проводящего электричество делаем 2 ромба и соединяем их углами, а за ними крепится отражатель, для того чтобы избавиться от помех.

Лучший метал для антенны Харченко своими руками — это проволока из меди или алюминия размерами 3 — 6 мм в диаметре.

Для присоединения цифровой антенны и получения сигнала на цифровом телевизоре необходим коаксиальный кабель нужных размеров.

Антенна Харченко своими руками

Как сделать антенну из кабеля своими руками

Идея упрощенной структуры самодельной антенны без использования меди и алюминия понравиться стремящимся выполнить замысел в домашних условиях. Для этого потребуется материал который можно найти дома или в гараже и коаксиальный кабель.

На кабеле метражом 550 мм устранить диэлектрическую защиту с обоих концов и смотать оплетку в одно целое. Сложить кабель в круг или ромб и зафиксировать на фанере проволокой или клейкой лентой, промежуток между оголенными кусками провода должен составлять 3 см. Согласующая структура также производится из коаксиального кабеля размером 180 см. в виде подковы. На один конец посадить штекер, а второй освободить от диэлектрика до центральной жилы и оплетки. Соединить кольцо и согласующее устройство присоединив кабель идущий к самодельной антенне от телевизора. Штекер в радиоканал и автонастройку на телеприемнике.

Читайте также  Типичные ошибки планирования, детальное и сетевое планирование

Как сделать квадратную антенну своими руками

В квадратной антенне узкополосный принцип, она применяется если ловить необходимо очень тихий, глухой сигнал. Также спасает в случаях, когда тихий сигнал «перебивается» сильным. По причине узкополосности — требуется более меткое определение цели с исходящим сигналом. Квадратное устройство подойдет для принятия цифрового ТВ обоих мультиплексов.

Теория радиоволн: антенны

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.

Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.

Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны
Симметричный вибратор

В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Диаграмма направленности следующая:

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны

Также имеет название — антенна наклонный луч.

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

Антенна волновой канал


Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

Рамочная антенна

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность — рамочная антенна с рефлектором:

Логопериодическая антенна

Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

Поляризация

Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

Урок 2.4 Антенны. Назначение, конструкции, характеристики

Антенна, это устройство, можно сказать зонд, который помещается в пространство для создания радиоволн (передающая антенна) или отбора энергии радиоволн (приемная антенна).

Передающая антенна преобразует энергию токов высокой частоты поступающую с выхода передатчика по линии передачи (кабелю или волноводу) в энергию электромагнитных волн.

Приемная антенна преобразует энергию электромагнитных волн в энергию токов высокой частоты которая от антенны по линии передачи поступает на вход приемника.

Линии для передачи энергии (кабели, волноводы) между антенной и устройством еще называют фидерами.

Одна и та же антенна может быть, как передающей, так и приемной. Все зависит от того подключена она к передатчику или приемнику.

На рисунке ниже показан принцип распространения радиоволн. Подробнее о нем говорилось в Уроке 2.1. Напомним его. Всякое изменяющееся электрическое поле (Е) вызывает появление изменяющегося магнитного поля (Н), сдвинутого относительно него в пространстве и времени.

В свою очередь, всякое изменяющееся магнитное поле вызывает появление изменяющегося электрического поля так же сдвинутого относительно него в пространстве и времени.

Распространение электромагнитного поля происходит со скоростью света, равной 3х10 8 м/сек.

Изменение величины (амплитуды) поля происходит с частотой изменения токов, поступающих с выхода передатчика. Поэтому в пространстве амплитуды векторов электрического (Е) и магнитного (Н) поля располагаются с периодом λ.

Напомним, λ — это длина волны. Она определяется как скорость света (в метрах в секунду) деленная на частоту (в Герцах):

λ (м)= 3×10 8 (м/сек) / f (Гц)

Из рисунка видно, если поместить зонд (антенну) между точками А и В, то можно получить максимальное значение сигнала. Расстояние между точками А и В равно λ/2.

Именно поэтому размеры антенны должны быть соизмеримы с длиной волны (частотой) передаваемого (принимаемого сигнала.)

Чем выше частота передаваемого (принимаемого) сигнала, тем меньше геометрические размеры антенны.

Антенны для длинных, средних и коротких волн имеют большие геометрические размеры и выполняются с использованием мачт, растяжек и других довольно громоздких конструкций.

Пример простейшей антенны для средних волн:

В радиоприемниках, для уменьшения геометрических размеров антенн средних и длинных волн, их выполняют на ферритовых сердечниках:

Антенны УКВ и телевизионных частот, имеют гораздо меньшие размеры и выполняются, как правило, из полых трубок, обычно алюминиевых.

Ниже на рисунке «а» изображена телевизионная антенна «волновой канал» с указанием размеров ее элементов в привязке к длине волны λ, а на рисунке «б» ее диаграмма направленности.

Антенны для работы на более высоких частотах, несколько гигагерц, уже выполняются в виде зеркала и облучателя, установленного в фокусе этого зеркала. Наиболее распространенными представителями таких антенн являются спутниковые.

Пример такой антенны:

Из приведенной выше информации становится понятно, что конструкции антенн очень разнообразны. Но, несмотря на такое разнообразие у антенн много общих параметров и характеристик.

Рассмотрим основные из них. Поскольку антенны обладают принципом взаимности (параметры на прием и передачу аналогичны), мы будем говорить о приемных антеннах.

  1. Диапазон рабочих частот. Это полоса частот, в пределах которой параметры антенны сохраняют значения, обеспечивающие необходимый уровень сигнала на выходе антенны.
  2. Диаграмма направленности антенны – это график, показывающий зависимость уровня сигнала на зажимах антенны от направления прихода сигнала.
  3. Коэффициент усиления антенны по напряжению – это отношение напряжения на выходе антенны к величине напряжения на выходе полуволнового вибратора, помещенного в ту же точку приема. Коэффициент усиления антенны тем выше, чем уже диаграмма направленности антенны.
  4. Входное сопротивление антенны Zвх – это отношение напряжения к току на зажимах антенны. Чем ближе входное сопротивление антенны (Zвх) к волновому сопротивлению фидера (Zв), тем лучше согласованы антенна и фидер. Чем лучше они согласованы, тем больше энергии передается от антенны к фидеру. Степень согласования оценивается коэффициентом бегущей волны (КБВ). Если Zвх = Zв , то КБВ = 1 и вся энергия от антенны передается в фидер. При этом в фидере устанавливается режим бегущей волны. Конечно, при этом на другом конце фидера, где он подключен ко входу приемника, так же должно выполняться согласование Zв с входным сопротивлением приемника.
  5. Поляризация. Определяется по ориентации в пространстве вектора электрического поля (Е). При его вертикальном расположении поляризация называется вертикальной, при горизонтальном расположении (параллельно поверхности земли) — горизонтальной. Выставляется поляризация положением передающей антенны и приемная антенна должна располагаться с учетом этой информации.

Правильно подобранная и установленная антенна может в разы повысить качество сигнала на входе радиоприемника или телевизора.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: