Проектирование кулачковых самоцентрирующих патронов - ABCD42.RU

Проектирование кулачковых самоцентрирующих патронов

Проектирование кулачковых самоцентрирующих патронов — курсовая работа

ТОЛЬЯТТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Технология машиностроения»

ПРОЕКТИРОВАНИЕ КУЛАЧКОВЫХ САМОЦЕНТРИРУЮЩИХ ПАТРОНОВ

Курсовая работа по дисциплине «Технологическая оснастка»

Студент: Бережнов Е. П.

Преподаватель: Кучеров Андрей Олегович

Цель курсовой работы – научиться проектировать станочные приспособления на примере разработки конструкции токарного самоцентрирующего трехкулачкового патрона.

Задачи курсового проекта:

— изучить конструкцию кулачкового патрона;

— разобраться в методике проектирования станочного приспособления;

— выполнить необходимые расчеты для проектирования патрона и силового привода к нему;

— разработать конструкцию токарного кулачкового самоцентрирующего патрона с механизированным приводом;

1.1 Сбор исходных данных

Операционный эскиз


Вид и материал заготовки – штамповка, сталь45.

Вид обработки – черновая.

Материал и геометрия режущей части инструмента – резец расточной из Т15К6 с

Режимы резания: глубина t=1.2мм, подача S=0,45мм/об.

Скорость резания определяем по формуле:

;

м/мин

Металлорежущий станок – 16К20Ф3 (наибольший диаметр патрона – 200мм, внутренний конус шпинделя – Морзе 6.

1.2 Расчет сил резания

Расчет сил резания выполним по методике, изложенной в [3]. При внутреннем точении составляющие Pz , Py силы резания рассчитываются по формуле:

,

где Ср , Х, У, n – постоянная и показатели степени для конкретных условий обработки. При обработке стали резцом, оснащенным пластиной из твердого сплава, равны:

Поправочный коэффициент Кр представляет собой произведение ряда коэффициентов, учитывающий фактические условия резания

Кр=Кмр . Кφр . Кγр . Кλр

где Кмр= — коэффициент, учитывающий влияние качества обрабатываемого материала на силовые зависимости (n’=0,75 для стали [3]).

Кφр –коэффициент, учитывающий влияние угла в плане резца на силы.

Кγр — коэффициент, учитывающий влияние переднего угла резца на силы.

Кλр — коэффициент, учитывающий влияние угла наклона режущей кромки.

Кφр=0,94, Кγр=1,1, Кλр=1

Кφр=0,77, Кγр=1,4, Кλр=1,25

Кмр=

Крz=1 . 0,94 . 1,1 . 1=1,034

Кру=1 . 0,77 . 1,4 . 1,25=1,3475

1.3 Расчет усилия зажима

В процессе обработки заготовки на нее воздействует система сил. С одной стороны действует составляющие силы резания, с другой – сила зажима препятствующая этому. Из условия равновесия моментов данных сил и с учетом коэффициента запаса определяются необходимые зажимное и исходное усилия.

Суммарный крутящий момент от касательной составляющей силы резания, стремящейся провернуть заготовку в кулачках равен:

Повороту заготовки препятствует момент силы зажима, определяемый следующим образом:

Из равенства Мр’ и Mз’ определяем необходимое усилие зажима, препятствующее повороту заготовки в кулачках.

где

Сила Ру стремится вывернуть заготовку из кулачков.

Данному моменту препятствует момент от силы зажима

Необходимая сила зажима равна:

, где

d2 =102мм, Pу=854Н, f=0,4, l=105мм, К=2,52

Для дальнейших расчетов принимаем наихудший случай

Величина усилия зажима W1 прикладываемая к постоянным кулачкам несколько увеличивается по сравнению с усилием W и рассчитывается по формуле:

где lk — вылет кулачка, расстояние от середины рабочей поверхности сменного кулачка до середины направляющей постоянного кулачка.

Нк – длина направляющей постоянного кулачка, мм.

f – коэффициент трения в направляющих постоянного кулачка и корпуса

вс =30мм, — толщина сменного кулачка,

вкз =20+30=50мм, — толщина постоянного кулачка

Вк =40мм, — ширина направляющей постоянного кулачка

В1 =25мм, — ширина сменного кулачка

Подставим исходные данные в формулу:

1.4 Расчет зажимного механизма патрона

Приступая к расчету зажимного механизма необходимо определиться с его конструкцией. В самоцентрирующих механизмах установочные элементы (кулачки) должны быть подвижными в направлении зажима и закон их относительного движения необходимо выдержать с высокой точностью. Поэтому на движение кулачков накладываются условия: разнонаправленность, одновременность и равная скорость движения. Данное условие можно выдержать, обеспечивая движение трех кулачков от одного источника движения.

В кулачковых патронах наибольшее применение получили рычажные и клиновые зажимные механизмы, движение которым передается центральной втулкой, связанной с силовым приводом.

Рычажный механизм представляет собой неравноплечий угловой рычаг, смонтированный в корпусе патрона на неподвижных осях, и которые своими сферическими концами входит с посадкой в пазы постоянного кулачка и центральной втулки.

При расчете зажимного механизма определяется усилие Q, создаваемое силовым приводом, которое зажимным механизмом увеличивается и передается постоянному кулачку

где iс – передаточное отношение по силе зажимного механизма

Данное отношение для рычажного механизма равно

где

А и Б – плечи рычага

На этапе расчета наружный диаметр патрона можно определить по формуле:

Дп =d2 +2 . Нк =102+2 . 80=262мм, так как Дп >200мм, выбираем рычажный зажимной механизм с iс =2.

1.5 Расчет силового привода

Для создания исходного усилия Q используется силовой привод, устанавливаемый на задний конец шпинделя. В его конструкции можно выделить силовую часть, вращающуюся совместно со шпинделем, и муфту для подвода рабочей среды. В качестве приводов наибольшее применение получили пневматические и гидравлические вращающиеся цилиндры.

Следует попытаться применить пневматический привод, так как в любом производстве имеются трубопроводы для подачи сжатого воздуха. Диаметр поршня пневмоцилиндра определяется по формуле:

где Р – избыточное давление воздуха. Р=0,4МПа.

В конструкции станка 16К20Ф3 можно встроить силовой привод с диаметром поршня не более 120мм. Если при расчете по формуле диаметр получится более 120 мм, то следует применять гидравлический привод, где за счет регулирования давления масла можно получить большие исходные усилия. При заданном усилии Q подбираем давление масла (Рг =1; 2,5; 5; 7,5МПа), чтобы диаметр поршня не превышал 120мм.

мм, — для пневмопривода

мм, — для гидрацилиндра

Ход поршня цилиндра рассчитывается по формуле:

+10…15мм,

где Sw – свободный ход кулачков. Sw =5мм

— передаточное отношение зажимного механизма по перемещению.

+10=20мм.

1.6 Расчет погрешности установки заготовки в приспособление

Погрешность установки определяется по формуле:

где εδ – погрешность базирования, равная нулю, так как измерительная база используется в качестве технологической.

εз – погрешность закрепления – это смещение измерительной базы под действием сил зажима. εз =0

εпр – погрешность элементов приспособления, зависящая от точности их изготовления.

1 , ∆3 – погрешности, возникающие вследствие неточности изготовления размеров А1 и А3 (∆1 =0,013мм, ∆3 =0,008мм)

2 , ∆4 , ∆6 – погрешности из-за колебания зазоров в сопряжениях (∆2 =0,009мм, ∆4 =0,013мм)

5 – погрешность, появляющаяся из-за неточности изготовления плеч рычага.

Z =0.0315

125245 (Проектирование кулачковых самоцентрирующих патронов)

Описание файла

Документ из архива «Проектирование кулачковых самоцентрирующих патронов», который расположен в категории «курсовые работы». Всё это находится в предмете «промышленность, производство» из раздела «Студенческие работы», которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе «курсовые/домашние работы», в предмете «промышленность, производство» в общих файлах.

Онлайн просмотр документа «125245»

Текст из документа «125245»

ТОЛЬЯТТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Технология машиностроения»

ПРОЕКТИРОВАНИЕ КУЛАЧКОВЫХ САМОЦЕНТРИРУЮЩИХ ПАТРОНОВ

Курсовая работа по дисциплине «Технологическая оснастка»

Студент: Бережнов Е. П.

Преподаватель: Кучеров Андрей Олегович

Цель курсовой работы – научиться проектировать станочные приспособления на примере разработки конструкции токарного самоцентрирующего трехкулачкового патрона.

Задачи курсового проекта:

изучить конструкцию кулачкового патрона;

разобраться в методике проектирования станочного приспособления;

выполнить необходимые расчеты для проектирования патрона и силового привода к нему;

разработать конструкцию токарного кулачкового самоцентрирующего патрона с механизированным приводом;

1.1 Сбор исходных данных

Операционный эскиз

Вид и материал заготовки – штамповка, сталь45.

Вид обработки – черновая.

Материал и геометрия режущей части инструмента – резец расточной из Т15К6 с

Режимы резания: глубина t=1.2мм, подача S=0,45мм/об.

Скорость резания определяем по формуле:

;

м/мин

Металлорежущий станок – 16К20Ф3 (наибольший диаметр патрона – 200мм, внутренний конус шпинделя – Морзе 6.

Читайте также  Преступление, его виды, наказание

1.2 Расчет сил резания

Расчет сил резания выполним по методике, изложенной в [3]. При внутреннем точении составляющие Pz, Py силы резания рассчитываются по формуле:

,

где Ср, Х, У, n – постоянная и показатели степени для конкретных условий обработки. При обработке стали резцом, оснащенным пластиной из твердого сплава, равны:

Поправочный коэффициент Кр представляет собой произведение ряда коэффициентов, учитывающий фактические условия резания

Кр=Кмр . Кφр . Кγр . Кλр

где Кмр= — коэффициент, учитывающий влияние качества обрабатываемого материала на силовые зависимости (n’=0,75 для стали [3]).

Кφр –коэффициент, учитывающий влияние угла в плане резца на силы.

Кγр — коэффициент, учитывающий влияние переднего угла резца на силы.

Кλр — коэффициент, учитывающий влияние угла наклона режущей кромки.

Кφр=0,94, Кγр=1,1, Кλр=1

Кφр=0,77, Кγр=1,4, Кλр=1,25

Кмр=

Крz=1 . 0,94 . 1,1 . 1=1,034

Кру=1 . 0,77 . 1,4 . 1,25=1,3475

1.3 Расчет усилия зажима

В процессе обработки заготовки на нее воздействует система сил. С одной стороны действует составляющие силы резания, с другой – сила зажима препятствующая этому. Из условия равновесия моментов данных сил и с учетом коэффициента запаса определяются необходимые зажимное и исходное усилия.

Суммарный крутящий момент от касательной составляющей силы резания, стремящейся провернуть заготовку в кулачках равен:

Повороту заготовки препятствует момент силы зажима, определяемый следующим образом:

Из равенства Мр’ и Mз’ определяем необходимое усилие зажима, препятствующее повороту заготовки в кулачках.

где

Сила Ру стремится вывернуть заготовку из кулачков.

Данному моменту препятствует момент от силы зажима

Необходимая сила зажима равна:

, где

d2=102мм, Pу=854Н, f=0,4, l=105мм, К=2,52

Для дальнейших расчетов принимаем наихудший случай

Величина усилия зажима W1 прикладываемая к постоянным кулачкам несколько увеличивается по сравнению с усилием W и рассчитывается по формуле:

где lk — вылет кулачка, расстояние от середины рабочей поверхности сменного кулачка до середины направляющей постоянного кулачка.

Нк – длина направляющей постоянного кулачка, мм.

f – коэффициент трения в направляющих постоянного кулачка и корпуса

вс=30мм, — толщина сменного кулачка,

вкз=20+30=50мм, — толщина постоянного кулачка

Вк=40мм, — ширина направляющей постоянного кулачка

В1=25мм, — ширина сменного кулачка

Подставим исходные данные в формулу:

1.4 Расчет зажимного механизма патрона

Приступая к расчету зажимного механизма необходимо определиться с его конструкцией. В самоцентрирующих механизмах установочные элементы (кулачки) должны быть подвижными в направлении зажима и закон их относительного движения необходимо выдержать с высокой точностью. Поэтому на движение кулачков накладываются условия: разнонаправленность, одновременность и равная скорость движения. Данное условие можно выдержать, обеспечивая движение трех кулачков от одного источника движения.

В кулачковых патронах наибольшее применение получили рычажные и клиновые зажимные механизмы, движение которым передается центральной втулкой, связанной с силовым приводом.

Рычажный механизм представляет собой неравноплечий угловой рычаг, смонтированный в корпусе патрона на неподвижных осях, и которые своими сферическими концами входит с посадкой в пазы постоянного кулачка и центральной втулки.

При расчете зажимного механизма определяется усилие Q, создаваемое силовым приводом, которое зажимным механизмом увеличивается и передается постоянному кулачку

где iс – передаточное отношение по силе зажимного механизма

Данное отношение для рычажного механизма равно

где

А и Б – плечи рычага

На этапе расчета наружный диаметр патрона можно определить по формуле:

Дп=d2+2 . Нк=102+2 . 80=262мм, так как Дп>200мм, выбираем рычажный зажимной механизм с iс=2.

1.5 Расчет силового привода

Для создания исходного усилия Q используется силовой привод, устанавливаемый на задний конец шпинделя. В его конструкции можно выделить силовую часть, вращающуюся совместно со шпинделем, и муфту для подвода рабочей среды. В качестве приводов наибольшее применение получили пневматические и гидравлические вращающиеся цилиндры.

Следует попытаться применить пневматический привод, так как в любом производстве имеются трубопроводы для подачи сжатого воздуха. Диаметр поршня пневмоцилиндра определяется по формуле:

где Р – избыточное давление воздуха. Р=0,4МПа.

В конструкции станка 16К20Ф3 можно встроить силовой привод с диаметром поршня не более 120мм. Если при расчете по формуле диаметр получится более 120 мм, то следует применять гидравлический привод, где за счет регулирования давления масла можно получить большие исходные усилия. При заданном усилии Q подбираем давление масла (Рг=1; 2,5; 5; 7,5МПа), чтобы диаметр поршня не превышал 120мм.

мм, — для пневмопривода

мм, — для гидрацилиндра

Ход поршня цилиндра рассчитывается по формуле:

+10…15мм,

где Sw – свободный ход кулачков. Sw=5мм

— передаточное отношение зажимного механизма по перемещению.

+10=20мм.

1.6 Расчет погрешности установки заготовки в приспособление

Погрешность установки определяется по формуле:

где εδ – погрешность базирования, равная нулю, так как измерительная база используется в качестве технологической.

εз – погрешность закрепления – это смещение измерительной базы под действием сил зажима. εз=0

εпр – погрешность элементов приспособления, зависящая от точности их изготовления.

1, ∆3 – погрешности, возникающие вследствие неточности изготовления размеров А1 и А3 (∆1=0,013мм, ∆3=0,008мм)

2, ∆4, ∆6 – погрешности из-за колебания зазоров в сопряжениях (∆2=0,009мм, ∆4=0,013мм)

5 – погрешность, появляющаяся из-за неточности изготовления плеч рычага.

Z =0.0315

Проектирование кулачковых самоцентрирующих патронов

ТОЛЬЯТТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Технология машиностроения»

ПРОЕКТИРОВАНИЕ КУЛАЧКОВЫХ САМОЦЕНТРИРУЮЩИХ ПАТРОНОВ

Курсовая работа по дисциплине «Технологическая оснастка»

Студент: Бережнов Е. П.

Преподаватель: Кучеров Андрей Олегович

Цель курсовой работы — научиться проектировать станочные приспособления на примере разработки конструкции токарного самоцентрирующего трехкулачкового патрона.

Задачи курсового проекта:

ь изучить конструкцию кулачкового патрона;

ь разобраться в методике проектирования станочного приспособления;

ь выполнить необходимые расчеты для проектирования патрона и силового привода к нему;

ь разработать конструкцию токарного кулачкового самоцентрирующего патрона с механизированным приводом;

1.1 Сбор исходных данных

Операционный эскиз

Вид и материал заготовки — штамповка, сталь45.

Вид обработки — черновая.

Материал и геометрия режущей части инструмента — резец расточной из Т15К6 с

Режимы резания: глубина t=1.2мм, подача S=0,45мм/об.

Скорость резания определяем по формуле:

Металлорежущий станок — 16К20Ф3 (наибольший диаметр патрона — 200мм, внутренний конус шпинделя — Морзе 6.

1.2 Расчет сил резания

Расчет сил резания выполним по методике, изложенной в [3]. При внутреннем точении составляющие Pz, Py силы резания рассчитываются по формуле:

где Ср, Х, У, n — постоянная и показатели степени для конкретных условий обработки. При обработке стали резцом, оснащенным пластиной из твердого сплава, равны:

Ср=300, Х=1, У=0,75, n=-0,15

Ср=243, Х=0,9, У=0,6, n=-0,3

Поправочный коэффициент Кр представляет собой произведение ряда коэффициентов, учитывающий фактические условия резания

где Кмр=- коэффициент, учитывающий влияние качества обрабатываемого материала на силовые зависимости (n’=0,75 для стали [3]).

Кцр -коэффициент, учитывающий влияние угла в плане резца на силы.

Кгр — коэффициент, учитывающий влияние переднего угла резца на силы.

Клр — коэффициент, учитывающий влияние угла наклона режущей кромки.

Кцр=0,94, Кгр=1,1, Клр=1

Кцр=0,77, Кгр=1,4, Клр=1,25

1.3 Расчет усилия зажима

В процессе обработки заготовки на нее воздействует система сил. С одной стороны действует составляющие силы резания, с другой — сила зажима препятствующая этому. Из условия равновесия моментов данных сил и с учетом коэффициента запаса определяются необходимые зажимное и исходное усилия.

Суммарный крутящий момент от касательной составляющей силы резания, стремящейся провернуть заготовку в кулачках равен:

Повороту заготовки препятствует момент силы зажима, определяемый следующим образом:

Из равенства Мр’ и Mз’ определяем необходимое усилие зажима, препятствующее повороту заготовки в кулачках.

Читайте также  Онкологические заболевания: причины и последствия

d1=62.6мм, d2=102мм, Pz=2277Н, f=0,4

Ко=1,5, К1=1,2, К2=1, К3 =1, К4=1, К5 =1, К6=1.

Ко=1,5, К1=1,2, К2=1.4, К3 =1, К4=1, К5 =1, К6=1.

Сила Ру стремится вывернуть заготовку из кулачков.

Данному моменту препятствует момент от силы зажима

Необходимая сила зажима равна:

d2=102мм, Pу=854Н, f=0,4, l=105мм, К=2,52

Для дальнейших расчетов принимаем наихудший случай

Величина усилия зажима W1 прикладываемая к постоянным кулачкам несколько увеличивается по сравнению с усилием W и рассчитывается по формуле:

где lk — вылет кулачка, расстояние от середины рабочей поверхности сменного кулачка до середины направляющей постоянного кулачка.

Нк — длина направляющей постоянного кулачка, мм.

f — коэффициент трения в направляющих постоянного кулачка и корпуса

вс=30мм, — толщина сменного кулачка,

вк+вз=20+30=50мм, — толщина постоянного кулачка

Вк=40мм, — ширина направляющей постоянного кулачка

В1=25мм, — ширина сменного кулачка

Подставим исходные данные в формулу:

1.4 Расчет зажимного механизма патрона

Приступая к расчету зажимного механизма необходимо определиться с его конструкцией. В самоцентрирующих механизмах установочные элементы (кулачки) должны быть подвижными в направлении зажима и закон их относительного движения необходимо выдержать с высокой точностью. Поэтому на движение кулачков накладываются условия: разнонаправленность, одновременность и равная скорость движения. Данное условие можно выдержать, обеспечивая движение трех кулачков от одного источника движения.

В кулачковых патронах наибольшее применение получили рычажные и клиновые зажимные механизмы, движение которым передается центральной втулкой, связанной с силовым приводом.

Рычажный механизм представляет собой неравноплечий угловой рычаг, смонтированный в корпусе патрона на неподвижных осях, и которые своими сферическими концами входит с посадкой в пазы постоянного кулачка и центральной втулки.

При расчете зажимного механизма определяется усилие Q, создаваемое силовым приводом, которое зажимным механизмом увеличивается и передается постоянному кулачку

где iс — передаточное отношение по силе зажимного механизма

Данное отношение для рычажного механизма равно

А и Б — плечи рычага

На этапе расчета наружный диаметр патрона можно определить по формуле:

Дп=d2+2.Нк=102+2.80=262мм, так как Дп>200мм, выбираем рычажный зажимной механизм с iс=2.

1.5 Расчет силового привода

Для создания исходного усилия Q используется силовой привод, устанавливаемый на задний конец шпинделя. В его конструкции можно выделить силовую часть, вращающуюся совместно со шпинделем, и муфту для подвода рабочей среды. В качестве приводов наибольшее применение получили пневматические и гидравлические вращающиеся цилиндры.

Следует попытаться применить пневматический привод, так как в любом производстве имеются трубопроводы для подачи сжатого воздуха. Диаметр поршня пневмоцилиндра определяется по формуле:

где Р — избыточное давление воздуха. Р=0,4МПа.

В конструкции станка 16К20Ф3 можно встроить силовой привод с диаметром поршня не более 120мм. Если при расчете по формуле диаметр получится более 120 мм, то следует применять гидравлический привод, где за счет регулирования давления масла можно получить большие исходные усилия. При заданном усилии Q подбираем давление масла (Рг=1; 2,5; 5; 7,5МПа), чтобы диаметр поршня не превышал 120мм.

мм, — для пневмопривода

мм, — для гидрацилиндра

Ход поршня цилиндра рассчитывается по формуле:

где Sw — свободный ход кулачков. Sw=5мм

— передаточное отношение зажимного механизма по перемещению.

1.6 Расчет погрешности установки заготовки в приспособление

Погрешность установки определяется по формуле:

где ед — погрешность базирования, равная нулю, так как измерительная база используется в качестве технологической.

ез — погрешность закрепления — это смещение измерительной базы под действием сил зажима. ез=0

епр — погрешность элементов приспособления, зависящая от точности их изготовления.

?1, ?3 — погрешности, возникающие вследствие неточности изготовления размеров А1 и А3 (?1=0,013мм, ?3=0,008мм)

?2, ?4, ?6 — погрешности из-за колебания зазоров в сопряжениях (?2=0,009мм, ?4=0,013мм)

?5 — погрешность, появляющаяся из-за неточности изготовления плеч рычага.

Патрон токарный самоцентрирующий трехкулачковый. Паспорт

Назначение.

Патрон токарный самоцетрирующий трехкулачковый относится к классу спирально-реечных самоцентрирующих трехкулачковых патронов с цилиндрическим пояском и креплением на токарном станке через промежуточный фланец. Самоцентрирующие спирально-реечные токарные патроны предназначены для установки на универсальные токарные, револьверные, внутришлифовальные станки.

Применяются в условиях единичного, мелкосерийного и серийного производства.В трехкулачковых самоцентрирующих патронах закрепляют заготовки круглой и шестигранной формы или круглые прутки большого диаметра. В отличие от токарных патронов клинореечного типа, не требуют времени на переналадку в том случае, когда требуется установка на другой диаметр зажима.

Технические характеристики.

Корпус патрона выполнен из высококачественного специального чугуна

Рис.1 — Общий вид и основные размеры трехкулачкового токарного патрона.

Технические характеристики токарного патрона приведены в таблице 1

Таблица 1

Наименование параметров Значения величин
Диаметр наружный D, мм 250
Диаметр присоединительного пояска D2, мм 200H7
Диаметр отверстия в корпус D1, мм 76
Диаметр расположения крепежных отверстий, мм, D3 224
Наружный диаметр изделия, зажимаемого в прямых кулачках,мм наибольший 120
Наружный диаметр изделия, зажима­емого в обратных кулачках, мм наибольший 266
Максимально допустимая частота вращения, мин ‘ 2000
Высота бортика под фланец 5
Высота патрона без кулачков 85
Высота патрона в сборе 119
Масса патрона, кг 29
Крепеж 6 болтов М12

С помощью токарного патрона, используя прямые и обратные кулачки, можно зафиксировать заготовки следующего диапазона размеров

Кулачок прямой предназначен для закрепления обрабатываемой заготовки за наружную поверхность для вала или за внутреннюю поверхность отверстия в заготовке. Кулачок обратный предназначен для закрепления обрабатываемой заготовки за наружную поверхность.

Точностные характеристики токарного патрона

Рис.2.1 — Токарный патрон на холостом ходу

патрон обеспечивает следующие точностные характеристики: Радиальное биение a – 0,045мм;

Торцевое биение c – 0,025мм.

Закрепляя заготовку в патроне можно добиться следующих характеристик:

Рис. 2.2 — Токарный патрон с креплением за внешнюю поверхность заготовки с прямыми кулачками.

диапазон закрепляемых заготовок от 5 до 118мм;

Радиальное биение a на длине 80 мм – 0,040мм.

Рис. 2.3 — Токарный патрон с креплением заготовки за внешнюю поверхность с обратными кулачками.

диапазон закрепляемых заготовок от 77 до 188мм и от 160 до 250мм;

Радиальное биение a – 0,045мм;

Торцевое биение c – 0,025мм.

Рис. 2.4 — Токарный патрон с креплением заготовки за внутреннюю поверхность с прямыми кулачками.

диапазон закрепляемых заготовок от 62 до 174мм и от 145 до 256мм;

Радиальное биение a – 0,045мм;

Торцевое биение c – 0,025мм.

Устройство и принцип работы.

3.1. Конструкция спирально-реечного токарного патрона представлена на рис.3.

Рис.3 — Конструкция спирально-реечного токарного патрона.

Кулачки 1, 2 и 3 патрона перемещаются одновременно с помощью диска 4. На одной стороне этого диска выполнены пазы (имеющие форму архимедовой спирали), в которых расположены нижние выступы кулачков, а на другой — нарезано коническое зубчатое колесо, сопряженное с тремя коническими зубчатыми колесами 5. При повороте ключом одного из колес 5 диск 4 (благодаря зубчатому зацеплению) также поворачивается и посредством спирали перемещает одновременно и равномерно все три кулачка по пазам корпуса 6 патрона. В зависимости от направления вращения диска кулачки приближаются к центру патрона или удаляются от него, зажимая или освобождая деталь. Кулачки изготовляют трехступенчатыми и для повышения износостойкости закаливают.

Порядок работы и техническое обслуживание.

4.1. Патрон токарный расконсервировать, ознакомиться с паспортом на изделие.

4.2. Закрепить патрон на станок, затянув все болты и проверив надежность крепления.

4.3. Запустить станок, установить малые обороты и проверить с помощью вспомогательного измерительного инструмента значения радиального и торцевого биений патрона на холостом ходу.

4.4. После проверки правильности крепления можно перейти к работе на станке.

Комплектность.

В комплект входят:

  • патрон токарный в сборе с прямыми кулачками;
  • комплект обратных кулачков
  • комплект крепежных элементов (болты М12)
  • ключ шестигранный S10
  • ключ четырехгранный ⅔′′
  • паспорт
Читайте также  Система формирования спроса и стимулирования сбыта

Требования безопасности.

6.1. Крепление патрона токарного должно быть надежным, исключающим самопроизвольное ослабление в процессе работы.

6.2. Запрещается применять ударную нагрузку при закреплении заготовки.

Сведения о консервации.

7.1. Патрон токарный подвергнут консервации в соответствии с требованиями ГОСТ 9014-76. Наименование и марка консерванта – масло консервационное К-17.

6.2. Срок хранения патрона токарного без переконсервации – 2 года, при условии хранения в условиях по ГОСТ 15150-69.

Правила хранения.

Условия эксплуатации токарного патрона трехкулачкового — ГОСТ 15150-69 в закрытом помещении при отсутствии паров агрессивных веществ, вызывающих коррозию патрона.

Гарантийные обязательства.

Гарантийный срок эксплуатации изделия – 1 год, со дня продажи (получения покупателем) патрона трехкулачкового, при условии соблюдения потребителем правил хранения и эксплуатации изделия.

Скачать технический паспорт бесплатно можно по ссылке ниже.

Курсовая работа: Проектирование кулачковых самоцентрирующих патронов

ТОЛЬЯТТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Технология машиностроения»

ПРОЕКТИРОВАНИЕ КУЛАЧКОВЫХ САМОЦЕНТРИРУЮЩИХ ПАТРОНОВ

Курсовая работа по дисциплине «Технологическая оснастка»

Студент: Бережнов Е. П.

Преподаватель: Кучеров Андрей Олегович

Цель курсовой работы – научиться проектировать станочные приспособления на примере разработки конструкции токарного самоцентрирующего трехкулачкового патрона.

Задачи курсового проекта:

— изучить конструкцию кулачкового патрона;

— разобраться в методике проектирования станочного приспособления;

— выполнить необходимые расчеты для проектирования патрона и силового привода к нему;

— разработать конструкцию токарного кулачкового самоцентрирующего патрона с механизированным приводом;

1.1 Сбор исходных данных

Операционный эскиз

Вид и материал заготовки – штамповка, сталь45.

Вид обработки – черновая.

Материал и геометрия режущей части инструмента – резец расточной из Т15К6 с

Режимы резания: глубина t=1.2мм, подача S=0,45мм/об.

Скорость резания определяем по формуле:

Металлорежущий станок – 16К20Ф3 (наибольший диаметр патрона – 200мм, внутренний конус шпинделя – Морзе 6.

1.2 Расчет сил резания

Расчет сил резания выполним по методике, изложенной в [3]. При внутреннем точении составляющие Pz, Py силы резания рассчитываются по формуле:

где Ср, Х, У, n – постоянная и показатели степени для конкретных условий обработки. При обработке стали резцом, оснащенным пластиной из твердого сплава, равны:

Ср =300, Х=1, У=0,75, n=-0,15

Ср =243, Х=0,9, У=0,6, n=-0,3

Поправочный коэффициент Кр представляет собой произведение ряда коэффициентов, учитывающий фактические условия резания

Кр=Кмр. Кφр. Кγр. Кλр

где Кмр= — коэффициент, учитывающий влияние качества обрабатываемого материала на силовые зависимости (n’=0,75 для стали [3]).

Кφр –коэффициент, учитывающий влияние угла в плане резца на силы.

Кγр — коэффициент, учитывающий влияние переднего угла резца на силы.

Кλр — коэффициент, учитывающий влияние угла наклона режущей кромки.

Кφр=0,94, Кγр=1,1, Кλр=1

Кφр=0,77, Кγр=1,4, Кλр=1,25

Крz=1. 0,94. 1,1. 1=1,034

Кру=1. 0,77. 1,4. 1,25=1,3475

1.3 Расчет усилия зажима

В процессе обработки заготовки на нее воздействует система сил. С одной стороны действует составляющие силы резания, с другой – сила зажима препятствующая этому. Из условия равновесия моментов данных сил и с учетом коэффициента запаса определяются необходимые зажимное и исходное усилия.

Суммарный крутящий момент от касательной составляющей силы резания, стремящейся провернуть заготовку в кулачках равен:

Повороту заготовки препятствует момент силы зажима, определяемый следующим образом:

Из равенства Мр’ и Mз’ определяем необходимое усилие зажима, препятствующее повороту заготовки в кулачках.

d1 =62.6мм, d2 =102мм, Pz=2277Н, f=0,4

К=Ко. К1. К2. К3. К4. К5. К6

Ко=1,5, К1 =1,2, К2 =1, К3 =1, К4 =1, К5 =1, К6 =1.

Ко=1,5, К1 =1,2, К2 =1.4, К3 =1, К4 =1, К5 =1, К6 =1.

Сила Ру стремится вывернуть заготовку из кулачков.

Данному моменту препятствует момент от силы зажима

Необходимая сила зажима равна:

d2 =102мм, Pу=854Н, f=0,4, l=105мм, К=2,52

Для дальнейших расчетов принимаем наихудший случай

Величина усилия зажима W1 прикладываемая к постоянным кулачкам несколько увеличивается по сравнению с усилием W и рассчитывается по формуле:

где lk — вылет кулачка, расстояние от середины рабочей поверхности сменного кулачка до середины направляющей постоянного кулачка.

Нк – длина направляющей постоянного кулачка, мм.

f – коэффициент трения в направляющих постоянного кулачка и корпуса

вс =30мм, — толщина сменного кулачка,

вк +вз =20+30=50мм, — толщина постоянного кулачка

Вк =40мм, — ширина направляющей постоянного кулачка

В1 =25мм, — ширина сменного кулачка

Подставим исходные данные в формулу:

1.4 Расчет зажимного механизма патрона

Приступая к расчету зажимного механизма необходимо определиться с его конструкцией. В самоцентрирующих механизмах установочные элементы (кулачки) должны быть подвижными в направлении зажима и закон их относительного движения необходимо выдержать с высокой точностью. Поэтому на движение кулачков накладываются условия: разнонаправленность, одновременность и равная скорость движения. Данное условие можно выдержать, обеспечивая движение трех кулачков от одного источника движения.

В кулачковых патронах наибольшее применение получили рычажные и клиновые зажимные механизмы, движение которым передается центральной втулкой, связанной с силовым приводом.

Рычажный механизм представляет собой неравноплечий угловой рычаг, смонтированный в корпусе патрона на неподвижных осях, и которые своими сферическими концами входит с посадкой в пазы постоянного кулачка и центральной втулки.

При расчете зажимного механизма определяется усилие Q, создаваемое силовым приводом, которое зажимным механизмом увеличивается и передается постоянному кулачку

где iс – передаточное отношение по силе зажимного механизма

Данное отношение для рычажного механизма равно

А и Б – плечи рычага

На этапе расчета наружный диаметр патрона можно определить по формуле:

Дп =d2 +2. Нк =102+2. 80=262мм, так как Дп >200мм, выбираем рычажный зажимной механизм с iс =2.

1.5 Расчет силового привода

Для создания исходного усилия Q используется силовой привод, устанавливаемый на задний конец шпинделя. В его конструкции можно выделить силовую часть, вращающуюся совместно со шпинделем, и муфту для подвода рабочей среды. В качестве приводов наибольшее применение получили пневматические и гидравлические вращающиеся цилиндры.

Следует попытаться применить пневматический привод, так как в любом производстве имеются трубопроводы для подачи сжатого воздуха. Диаметр поршня пневмоцилиндра определяется по формуле:

где Р – избыточное давление воздуха. Р=0,4МПа.

В конструкции станка 16К20Ф3 можно встроить силовой привод с диаметром поршня не более 120мм. Если при расчете по формуле диаметр получится более 120 мм, то следует применять гидравлический привод, где за счет регулирования давления масла можно получить большие исходные усилия. При заданном усилии Q подбираем давление масла (Рг =1; 2,5; 5; 7,5МПа), чтобы диаметр поршня не превышал 120мм.

мм, — для пневмопривода

мм, — для гидрацилиндра

Ход поршня цилиндра рассчитывается по формуле:

где Sw – свободный ход кулачков. Sw =5мм

— передаточное отношение зажимного механизма по перемещению.

1.6 Расчет погрешности установки заготовки в приспособление

Погрешность установки определяется по формуле:

где εδ – погрешность базирования, равная нулю, так как измерительная база используется в качестве технологической.

εз – погрешность закрепления – это смещение измерительной базы под действием сил зажима. εз =0

εпр – погрешность элементов приспособления, зависящая от точности их изготовления.

∆1, ∆3 – погрешности, возникающие вследствие неточности изготовления размеров А1 и А3 (∆1 =0,013мм, ∆3 =0,008мм)

∆2, ∆4, ∆6 – погрешности из-за колебания зазоров в сопряжениях (∆2 =0,009мм, ∆4 =0,013мм)

∆5 – погрешность, появляющаяся из-за неточности изготовления плеч рычага.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: