Структурные уровни организации живой материи - ABCD42.RU

Структурные уровни организации живой материи

Структурные уровни организации живой материи

Тульский государственный педагогический университет им Л.Н. Толстого
Кафедра философии
Губбыева З.О., Каширин А.Ю., Шлапакова Н.А.

Структурные уровни организации живой материи.

В развитии биологии выделяют три основных этапа. Первый – систематики (Карл Линней), второй – эволюционный (Чарльз Дарвин), третий – микробиологии (Грегор Мендель).

Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни. Первое. Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах. Второе. Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию. Третье. Живые организмы активно реагируют на окружающую среду. Способность реагировать на внешние раздражители – универсальное свойство всех живых существ, как растений, так и животных. Четвертое. Живые организмы способны не только изменяться, но и усложняться. Они могут создавать новые органы, отличающиеся от породивших их структур. Пятое. Живое способно к самовоспроизведению. Шестое. Живые организмы способны передавать потомкам заложенную в них информацию, содержащуюся в генах – единицах наследственности. Эта информация в процессе передачи может видоизменяться и искажаться. Это предопределяет изменчивость живого. Седьмое. Живые организмы способны приспосабливаться к среде обитания и своему образу жизни.

Из совокупности этих признаков вытекает следующее обобщенное определение сущности живого: Жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению. Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты.

Структурный или системный анализ обнаруживает, что мир живого чрезвычайно многообразен и имеет сложную структуру.

    Условно на основе критерия масштабности можно выделить следующие уровни организации живого вещества:
  1. Биосферный. Включает всю совокупность живых организмов Земли вместе с окружающей их природной средой.
  2. Уровень биогеоцинозов. Отражает структуры, состоящие из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс – экосистему.
  3. Популяционно-видовой уровень. Образуется свободно скрещивающимися между собой особями одного и того же вида.
  4. Организменный и органно-тканевый уровни. Отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.
  5. Клеточный и субклеточный уровни. Отражают особенности специализации клеток, а также внутриклеточные структуры.
  6. Молекулярный уровень. Отражает особенности химизма живого вещества, а также механизмы и процессы передачи генной информации.

Живая клетка является фундаментальной частицей структуры живого вещества. Она является простейшей системой, обладающей всем комплексом свойств живого, в том числе способностью переносить генетическую информацию. Клеточная теория была создана немецкими учеными Теодором Шванном и Матиасом Шлейденом. Ее основное положение состоит в утверждении, что все растительные и животные организмы состоят из клеток, сходных по своему строению. Исследования в области цитологии показали, что все клетки осуществляют обмен веществ, способны к саморегуляции и могут передавать наследственную информацию. Жизненный цикл любой клетки завершается или делением и продолжением жизни в обновленном виде, или гибелью. Вместе с тем выяснилось, что клетки весьма многообразны, они могут существовать как одноклеточные организмы или в составе многоклеточных. Срок жизни клеток может не превышать нескольких дней, а может совпадать со сроком жизни организма. Размеры клеток сильно колеблются: от 0,001 до 10 см. Клетки образуют ткани, несколько типов тканей – органы, группы органов, связанные с решением каких-либо общих задач называются системами организма. Клетки имеют сложную структуру. Она обособляется от внешней среды оболочкой, которая , будучи неплотной и рыхлой, обеспечивает взаимодействие клетки с внешним миром, обмен с ним веществом, энергией и информацией. Метаболизм клеток служит основой для другого их важнейшего свойства – сохранения стабильности, устойчивости условий внутренней среды клетки. Это свойство клеток, присущее всей живой системе, называют гомеостазом. Гомеостаз, то есть постоянство состава клетки, поддерживается метаболизмом, то есть обменом веществ. Обмен веществ – сложный, многоступенчатый процесс, включающий доставку в клетку исходных веществ, получение из них энергии и белков, выведение из клетки в окружающую среду выработанных полезных продуктов, энергии и отходов.

В настоящее время к миру живого относят также вирусы, которые не имеют клеточной структуры. Кроме того, существуют также некоторые организмы с клеточным строением, клетки которых не имеют типичной структуры. Это так называемые прокариоты, их клетки не имеют ядер. Прокариоты являются историческими предшественниками организмов с развитыми клетками. К ним относят бактерии и сине-зеленые водоросли. Нити нуклеиновых кислот у этих клеток расположены не в ядре, а в цитоплазме.

Общепризнано, что структуры, управляющие жизнедеятельностью клетки, расположены в ядре в длинных цепях молекул нуклеиновых кислот (ДНК и РНК), исходной единицей которых является ген (от греч. «рождающий»).

Интенсивное проникновение эволюционной парадигмы в биологию началось в конце XVIII в. благодаря работам французского биолога Ламарка. Ламарк объяснил изменчивость видов взаимодействием двух факторов: влияния внешней среды (питание, климат, упражнение органов) и наследственности. Проблемы, поставленные Ламарком, были успешно разрешены Ч. Дарвином в его работе «Происхождение видов путем естественного отбора» (1859), которая заложила основу учения о биологической эволюции. Это наука о причинах, движущих силах и закономерностях изменения и развития живых организмов. Эволюционное учение является теоретической основой современной биологии. С точки зрения теории эволюции все многообразие живой природы является результатом действия трех взаимосвязанных факторов: наследственности, изменчивости и естественного отбора. Эти выводы теории эволюции базируются на следующих наблюдениях. Во-первых, в любой популяции животных наблюдается изменчивость составляющих ее особей. Во-вторых, некоторые из этих изменений получены от родительских особей, другие являются результатом приспособления к окружающей среде и приобретены в течение жизни. В-третьих, рождается, как правило, гораздо большее число организмов, чем доживает до стадии размножения. Причем выживают те организмы, которые обладают сочетанием признаков, повышающих вероятность их выживания и размножения. Если эти признаки закреплены в генах, они передаются потомству. Наиболее ярко эволюционные процессы проявляются на уровне популяций (длительно существующих групп особей, устойчиво сохраняющихся на протяжении жизни многих поколений). Виды, как правило, состоят из нескольких популяций, хотя бывают и исключения. Появление элементарных эволюционных изменений в популяции, то есть ее новых устойчивых признаков, передающихся по наследству через несколько поколений зависит от следующих эволюционных факторов. Первое. Перестройка генов – мутационный процесс. Является основой разнообразия особей в популяциях, но он основан на случайности и не определяет направление эволюции. Второе. Популяционные волны – резкие колебания численности особей, они могут резко менять число встречающихся мутаций, создавая те или иные предпосылки для эволюционных изменений. Третье. Изоляция – возникновение препятствий, уменьшающих возможности обмена генетической информацией с другими группами особей данного вида. Она выступает как фактор, закрепляющий начальную стадию дифференциации генофонда обособившейся группы. Четвертое. Естественный отбор – выживание и оставление потомства. Этот фактор действует на всех стадиях развития особи, причем отбор закрепляет именно те особенности, которые полезны данному виду как целому. Эти признаки могут быть вредны для особи, но полезны для популяции. Таким образом, весь ход эволюции видов ведет к тому, что признаки, обеспечивающие выживание в данных условиях, встречаются в популяции все чаще от поколения к поколению, определяя направление развития вида. Эволюция есть направленный процесс исторического изменения живых организмов. Указанные факторы действуют не только на популяционном и видовом уровне как микроэволюци,. но также и на надвидовом уровне как макроэволюция, образуя новые виды и классы живого. Современная сложная структура живого является результатом продолжавшейся миллионы лет макро- и микроэволюции.

Комплекс представлений о макро- и микроэволюции, сложившийся к середине ХХ в., стали называть синтетической теорией эволюции.

Генетика – это биологическая наука о наследственности и изменчивости организмов и методах управления ими. Она является научной основой для разработки методов селекции, то есть создания новых пород животных, видов растений и т.д.

    Основными направлениями исследований ученых-генетиков в ХХ в. стали:
  1. Изучение элементарных материальных структур, которые являются носителями генетической информации, единицами наследственности.
  2. Исследование механизмов и закономерностей передачи генетической информации.
  3. Изучение механизмов реализации генетической информации, ее претворение в конкретные признаки и свойства организма.
  4. Выяснение причин и механизмов изменения генетической информации на разных этапах развития организма.

Крупнейшие открытия современной генетики связаны с установлением способности генов к перестройке – мутирование. Мутации могут быть полезными, вредными или нейтральными. Одним из результатов мутаций может быть появление организма нового вида – мутанта. Причины мутаций (изменения генной информации) до конца не выяснены. Однако установлены основные факторы, вызывающие мутации, так называемые мутагены. Известно, например, что мутации могут вызываться некоторыми общими условиями, в которых находится организм: его питанием, температурным режимом и т.д. или действием экстремальных факторов, например, некоторых химических веществ или радиоактивных элементов. Одним из наиболее опасных видов мутагенов являются вирусы.

Основные уровни организации живой материи

  • Уровни структурной организации живой материи
    • Что под этим понимается, иерархическое усложнение
  • Характеристики и процессы, характерные для различных уровней
    • Молекулярный
    • Клеточный
    • Организменный
    • Популяционно-видовой
    • Биогеоценотический
    • Биосферный
Читайте также  Системы восприятия человеком состояния внешней среды

Организация жизни на Земле имеет много форм своего проявления. Для каждой из них определяются общие черты, характерные функции. В процессе сосуществования живые материи переплетаются между собой, давая толчок к развитию и совершенствованию.

Уровни структурной организации живой материи

К единому определению жизни ученые до настоящего времени еще не пришли. Однако существует четкая характеристика понятия «живая материя», которое дает представление об особенностях жизни на Земле. Схематически эта характеристика выглядит следующим образом:

  1. Для живых организмов свойственен конкретный химический состав, основные компоненты которого – углерод, кислород, азот и водород.
  2. Организменная ткань состоит из клеток (исключение составляют вирусы).
  3. В процессе жизнедеятельности живые существа обмениваются с окружающей средой энергией и веществами, соблюдая при этом собственный гомеостаз.
  4. Генетические особенности передаются в последующие поколения по наследству. Происходит это при самовоспроизведении. Однако изменчивость и индивидуальное развитие не исключены.
  5. Для организмов свойственна раздражимость, ритмичность, адаптационные характеристики.
  6. Организмы, являясь целостными системами, состоят из отдельных элементов.
  7. Жизнь на Земле имеет свойство развиваться.
  8. Уровни организации живой материи находятся в иерархической зависимости.

На рисунке представлен систематизированный материал, характеризующий ступени организации живого субстрата. Каждый уровень развития имеет свое предназначение. В процессе эволюции развитие организма происходило от простого к сложному, что давало возможность приспосабливаться к меняющемуся окружающему миру и не останавливаться в своем развитии.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что под этим понимается, иерархическое усложнение

Различные проявления жизни на Земле обусловлены существованием огромного количества организмов. Они имеют в своей биологической основе много общих черт, хотя фенотипически не идентичны.

Определяет набор характерных признаков уровень организации живой материи. Начальная (молекулярная) ступень присутствует во всех организмах. Ее можно назвать универсальной для любого проявления жизни. Клетка единица, содержащая наследственную информацию, обязательный элемент размножения. Сменяющие друг друга тканевой и органный уровни закладывают основу физиологии и анатомии. На ступени популяции формируются видовые особенности.

Высшая степень биосфера не что иное, как глобальный круговорот веществ и потоки энергии, происходящие в результате жизнедеятельности всей биологической материи.

Последующие ступени развития постепенно отсеивают представителей более низкой организации, выводя жизнь на более высокую ступень.

Характеристики и процессы, характерные для различных уровней

Основные принципы, лежащие в основе жизнедеятельности организмов на различных этапах иерархической лестницы четко определены биологическими науками. Постепенное усложнение жизни – закономерный и постоянный процесс. Каждая ступень – обязательный этап, пройдя который живая материя совершенствуется.

Молекулярный

Начальный уровень. Его суть – химические реакции, в результате которых происходит превращение одних веществ в другие. Из отдельных атомов образуются молекулы белков, полисахаридов, липидов, нуклеиновых кислот, которые являются строительным материалов для клеток и тканей организма. Характеристика молекулярных соединений включает градацию их по степени сложности, размерам, физическим свойствам, например, силе межмолекулярных связей. Однако в целом такая с истема не считается живой, а методы ее изучения относятся к микроскопическим.

Клеточный

Общая классификация обозначает над молекулярным уровнем клеточную организацию. Однако более детальный подход обнаруживает надмолекулярный уровень (другое название – субклеточный). В его пределах молекулы структурируются в компоненты клеток – органеллы. В результате этого синтезируются мембрана (оболочка клетки), хромосомный аппарат, ядро, вакуоли, цитоплазмы и прочие клеточные компоненты.

Субклеточный этап предшествует клеточному, обеспечивая жизнеспособность форменных элементов.

Клетка – простейшая структура живого организма, способная к самостоятельному функционированию. Обязательный фактор для размножения, роста и развития.

Клетку можно смело назвать началом всего живого. В научной литературе такой процесс получил определение матричного синтеза биополимеров.

Природа клеточного уровня существования имеет ряд свойств:

  • структура и соответствующие функции растительных и животных клеток идентична;
  • в ней обеспечена возможность передачи генетической информации;
  • условия для жизни клетки обеспечиваются в результате клеточного метаболизма;
  • каждый вид клеток имеет свою специализацию, объясняющую природу раздражимости.

Организменный

Подобно тому, как между молекулярным и клеточным уровнями существует промежуточная ступень – надмолекулярная, клеточный и организменный этапы разделяет органно-тканевой. Именно здесь происходит синтез органов. Чем сложнее их организация, тем длительнее процесс. Поскольку на каждый орган возлагается четко определенная функция, клетки, образующие его ткань, строго специфичны.

Биология организменного уровня заключается в существовании одноклеточных либо многоклеточных структур. Имеется несколько определений организма, в основу которых положены его функции и строение.

Организм – тело живой природы, которому свойственны характеристики живой материи.

Биологический термин – особь – представляет собой организменный уровень существования материи. Для одноклеточных особей организмом является одна клетка. У многоклеточных каждая ткань (или орган) представлена объединением клеток.

Органный уровень – сложный компонент развития живой материи, в ходе которого он получает отличные от других функции.

Популяционно-видовой

Особи конкретного вида объединяются в популяции. Для каждой популяции свойственно обитание в конкретной зоне (ареале), для чего в процессе эволюции вырабатываются приспособленческие реакции. Популяцию характеризуют, как «самовоспроизводящуюся систему с надорганизменными свойствами». Представители одной популяции схожи по строению, функциям, способу существованию. Несколько популяций могут объединяться в один вид. Это имеет большое значение в эволюционных процессах: в результате скрещивания особей из различных популяций повышается плодовитость потомства.

Объединения живых организмов в одну систему носит название биоценозом.

Биогеоценотический

Объединение биоценоза с окружающей средой обеспечило переход живой материи на новый этап развития – биогеоценотический уровень. В нем живые организмы окружает неживая материя, представленная в виде почвы, воздуха, воды и прочих природных факторов. Примеры биогеоценоза: природный водоем, поверхностный слой грунта, естественный лес и другие.

Внутри биогеоценоза вырабатываются межорганизменные связи, переходящие в динамические сообщества. По-другому такой уровень называется экосистемным. Такой термин характеризует наличие межпопуляционного взаимодействия под влиянием факторов окружающей среды. Нарушения в одном из звеньев биогеоценоза часто ведет к серьезным сбоям в жизни состоящих в нем членов.

Не стоит путать понятие «биогеоценоз» и «экосистема». Биогеоценоз обычно представлен одним растительным комплексом. Например, лес, пруд. Экосистема – понятие более объемное и может охватывать не один биогеоценоз.

Сегодня существуют биогеоценозы природного и искусственного происхождения. Искусственный создан руками человека, чаще не способен к процессам саморегуляции. Примером может служить городской парк или агробиоценоз, создаваемый человеком для сельскохозяйственной деятельности.

Биосферный

Биосферный уровень существования живой материи – высший уровень ее организации. Это динамическая, претерпевающая постоянные изменения система, для которой свойственен круговорот энергии и отдельных веществ.

Термин произошел от греческих слов «βιος — жизнь» и «σφαῖρα — сфера, шар». Верным на сегодня определением является рассмотрение биосферы, как оболочки Земли, населенной живой материей, а также находящейся под постоянным воздействием продуктов жизнедеятельности живых существ. В биосфере насчитывается свыше 3 млн видов живых организмов, включая человека. Биосфера взаимосвязана с гидросферой и литосферой, а также контактирует с нижними слоями атмосферы.

Урок Бесплатно Уровни организации живых систем

Введение

Биология — сложная наука, которая не только изучает организмы животных, растений, грибов на уровне отдельных субъектов, но и пытается заглянуть за эту субъектность, объединяя организмы в определенные группы, которые затем становятся единицами изучения ученых.

Также ученые стремятся рассмотреть отдельные составляющие организма, проследить взаимодействие этих составляющих друг на друга и их влияние на отдельный субъект. Изучая внутренние органы животных, исследователи пытаются понять, как один орган влияет на другой (например, как головной мозг регулирует деятельность остальных органов).

То есть биология пытается развить представление о целостности живой природы на основе анализа и синтеза, поэтому учеными были выделены уровни организации живых организмов для понимания устройства и взаимодействия всего живого и неживого.

Уровни организации жизни — это иерархически соподчиненные уровни организации биосистем, то есть низшие уровни подчинены высшим. Они отражают степень усложнения различных биосистем.

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня, то есть характер клеточного уровня организации определяется молекулярным, характер организменного- клеточным уровнем.

Например, сердце формируется благодаря особому строению и функциям мышечных клеток, которое было определено их молекулярным строением.

Деление живого на уровни весьма условно, оно просто отражает системный подход в изучении природы.

Каждый отдельный уровень изучает соответствующий отдел науки о живом: молекулярной биологии, цитологии, генетики, анатомии, физиологии, экологии и других наук.

Выделяют три большие группы уровней организации:

  • суборганизменный
  • организменный (или онтогенетический)
  • надорганизменный

Суборганизменный уровень включает, в свою очередь, пять уровней: атомарный, молекулярный, субклеточный, клеточный, тканевый, органный.

Тканевый и органный уровни чаще всего объединяют в один — тканево-органный.

Организменный (или онтогенетический) уровень- это сам организм.

Надорганизменный уровень включает в себя три подуровня: популяционно- видовой, биогеоценотический, биосферный.

Мы с вами изучим основные уровни организации живых систем:

  • молекулярный
  • клеточный
  • тканевый
  • органный
  • организменный
  • популяционно-видовой
  • биогеоценотический
  • биосферный

Суборганизменные уровни организации

1. Молекулярный уровень организации жизни

Читайте также  Социальная стратификация общества 2

Молекулярный уровень можно назвать первым и наименьшим, но именно он является определяющим в строении и функции последующих уровней организации, то есть это как бы основа всех дальнейших уровней.

Формируют этот уровень молекулы белков, жиров, углеводов, нуклеиновых кислот, которые сами по себе вне клеточных структур не являются живыми, но именно они создают надмолекулярные клеточные структуры, в которых проявляются отдельные, но очень важные признаки жизни.

Именно на молекулярном уровне происходят различные биохимические реакции, а реализация наследственной информации происходит благодаря молекулам ДНК и РНК . Механизмы этих процессов универсальные для всех живых организмов.

Благодаря изучению молекулярного уровня можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности, основы последовательных биохимических реакций в организме.

К примеру, на уроке «Метаболизм. Пластический обмен» мы разбирали такое свойство генетического кода, как универсальность, согласно которому гены всех организмов одинаковым образом кодируют наследственную информацию, будь это бактерии или клетки человека — принцип будет одинаковым, и эти процессы идут именно на молекулярном уровне организации живого.

Компоненты молекулярного уровня: молекулы неорганических и органических соединений, молекулярные комплексы химических соединений (клеточная мембрана или мембраны ядра).

Основные процессы молекулярного уровня:

  • объединение молекул в особые комплексы
  • осуществление упорядоченных физико-химических реакций
  • копирование (редупликация) ДНК, кодирование и передача генетической информации

Науки, ведущие исследования на этом уровне:

  • биохимия
  • биофизика
  • молекулярная биология
  • молекулярная генетика

У меня есть дополнительная информация к этой части урока!

Атомный (элементарный) уровень: на нем рассматривается роль отдельных химических элементов в живом организме (Fe, F, I, Se, Na).

Субклеточный уровень образован органеллами клетки (митохондриями, хлоропластами, рибосомами, лизосомами), ядром, хромосомами и другими субклеточными структурами.

На уровне субклеточных (надмолекулярных) структур ученые изучают строение и функции органелл, а также других включений клетки

2. Клеточный уровень организации жизни

Единицей этого уровня является клетка (клетки бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов (мукор, дрожжи), клеток многоклеточных организмов)).

Клетка- это структурная и функциональная единица всего живого.

Более подробную информацию о клетке вы можете узнать из урока «Клетка- основа жизни».

Именно на этом уровне прослеживаются все признаки живого (размножение, рост, обмен веществ, раздражение и другие признаки).

Клетка также является минимальной единицей живого, способной к самостоятельному существованию либо в виде одноклеточных организмов, либо в тканях многоклеточного организма.

Если говорить об организмах одноклеточных, то к таковым мы можем отнести бактерии и простейшие (амеб, эвглен, инфузорий), среди грибов к одноклеточным относятся дрожжи и мукор.

Если рассматривать многоклеточных организмов, то количество клеток в их организме может быть очень велико, и эти клетки могут сильно отличаться по строению, хоть и находятся в одном организме. Например, посмотрим на нервную и мышечную клетки человека:

Вне клетки жизни нет. Такие организмы, как вирусы, подтверждают это правило, потому что они могут проявлять признаки живого и реализовывать свою наследственную информацию только тогда, когда попали в живую клетку.

У меня есть дополнительная информация к этой части урока!

Стволовыми клетками называются незрелые клетки особого типа, способные развиваться во все виды клеток, составляющих различные ткани организма.

Стволовые клетки в организме находятся как бы в спящем состоянии, у них замедлен обмен веществ.

Они являются резервом организма в случае возникновения различных стрессовых ситуаций (травмы, ранения, болезни).

После «активации» они служат «материалом» для восстановления (регенерации) пораженных органов или тканей.

Также стволовые клетки необходимы для непрерывно происходящей в организме физиологической регенерации (замена старых клеток на новые).

Ученые полагают, что из стволовых клеток в отдаленной перспективе можно будет выращивать практически любую ткань, что может помочь лечению многих заболеваний.

Компоненты клеточного уровня: комплексы молекул химических соединений и органеллы клетки.

Основные процессы клеточного уровня:

  • биосинтез, фотосинтез, энергетический обмен, митоз, мейоз
  • регулирование химических реакций
  • деление клетки
  • привлечение химических элементов Земли и энергии Солнца в биосистеме

Науки, ведущие исследования на клеточном уровне:

  • цитология
  • генная инженерия
  • цитогенетика
  • эмбриология
  • микробиология

3. Тканевый уровень организации жизни

Единицей этого уровня является ткань.

Ткань— это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемых функций.

Ткани возникли в ходе эволюционного развития вместе с многоклеточностью организмов.

В ходе онтогенеза ткани образуются на ранних стадиях эмбрионального развития благодаря дифференциации клеток.

Дифференциация клеток- процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности, свойственные только для нее.

У животных различают несколько типов тканей: эпителиальная, соединительная, мышечная, нервная.

У растений выделяют следующие виды тканей: образовательная, основная (фотосинтезирующая), проводящая (флоэма, ксилема), покровная, механическая.

На этом уровне происходит специализация клеток.

Более подробно вы можете узнать о тканях из наших уроков: «Ткани растений» и «Ткани животных».

Компоненты тканевого уровня: клетки и межклеточная жидкость.

Основные процессы тканевого уровня: процессы, характерные для того или иного вида тканей (гомеостаз, регенерация).

Наука, ведущая исследования на тканевом уровне:

4. Органный уровень организации жизни

Составляют этот уровень органы многоклеточных организмов.

Орган- это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию.

Орган чаще всего образован несколькими видами тканей, среди которых одна (две) преобладает.

У меня есть дополнительная информация к этой части урока!

У простейших организмов, конечно же, нет тканей и органов, так как они состоят всего из одной клетки, но функции пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл в их клетках.

Организменный уровень организации жизни

Все живое на Земле существует в виде обособленных субъектов- особей, которые формируют организменный уровень.

При изучении одноклеточных организмов ученые отмечают то, что особью является каждая отдельная клетка, например, бактерия, простейшие (амеба, инфузория, эвглена), то есть это организмы, которые одновременно могут представлены и клеточным и организменным уровнем организации.

Также на этом уровне рассматривают и многоклеточные организмы: растения, животные, грибы.

Компоненты органного уровня: клетки одноклеточных; клетки и ткани, из которых образованы органы многоклеточных организмов.

Основные процессы органного уровня:

  • раздражительность
  • размножение
  • рост и развитие
  • нервно-гуморальная регуляция процессов жизнедеятельности
  • гомеостаз

Науки, ведущие исследования на органном уровне:

  • анатомия
  • биометрия
  • морфология
  • физиология
  • гистология

У меня есть дополнительная информация к этой части урока!

Биометрия- система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и так далее).

К примеру, в Китае активно используется технология распознавания лиц в различных областях, начиная от оплаты покупок до общественной безопасности.

Пройти тест и получить оценку можно после входа или регистрации

Уровни организации живой материи

Уровни организации живой материи — иерархически соподчиненные уровне организации биосистем, отражающие уровни их осложнения. Чаще всего выделяют шесть основных структурных уровней жизни: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный. В типичном случае каждый из этих уровней является системой из подсистем низшего уровня и подсистемой системы более высокого уровня.

Следует подчеркнуть, что построение универсального списка уровней биосистем невозможна. Выделять отдельный уровень организации целесообразно в том случае, если на нем возникают новые свойства, отсутствующие у систем более низкого уровня. Например, феномен жизни возникает на клеточном уровне, а потенциальное бессмертие — на популяционном. При исследовании различных объектов или различных аспектов их функционирования могут выделяться различные наборы уровней организации. Например, у одноклеточных организмов клеточный и организменный уровень совпадают. При изучении пролиферации (размножения) клеток многоклеточного уровня может быть необходимым выделение отдельных тканевого и органного уровней, так как для ткани и для органа могут быть характерны специфические механизмы регуляции исследуемого процесса.

Одним из выводов, вытекающих из общей теории систем является то, что биосистемы разных уровней могут быть подобные в своих существенных свойствах, например, принципах регуляции важных для их существования параметров

Молекулярный уровень организации жизни

Это специфические для живых организмов классы органических соединений (белки, жиры, углеводы, нуклеиновые кислоты и т.д.), их взаимодействие между собой и с неорганическими компонентами, роль в обмене веществ и энергии в организме, хранении и передаче наследственной информации. Этот уровень можно назвать начальным, наиболее глубинным уровнем организации живого. Каждый живой организм состоит из молекул органических веществ-белков, нуклеиновых кислот, углеводов, жиров, находящихся в клетках. Связь между молекулярным и следующим за ним клеточным уровнем обеспечивается тем, что молекулы — это тот материал, из которого созданы надмолекулярные клеточные структуры. Только изучив молекулярный уровень можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности и процессов обмена веществ в организме. Ведь именно на молекулярном уровне происходит преобразование всех видов энергии и обмен веществ в клетке. Механизмы этих процессов также универсальные для всех живых организмов.

Компоненты

  • Молекулы неорганических и органических соединений
  • Молекулярные комплексы химических соединений (мембрана и т.д.)
Читайте также  Портреты и интерьеры в романе Гончарова Обломов

Основные процессы

  • Объединение молекул в особые комплексы
  • Осуществление физико-химических реакций в упорядоченном виде
  • Копирование ДНК, кодирование и передача генетической информации

Науки, ведущих исследования на этом уровне

  • Биохимия
  • Биофизика
  • Молекулярная биология
  • Молекулярная генетика

Клеточный уровень организации жизни

Представленный свободноживущими одноклеточными организмами и клетками, входящих в многоклеточные организмы.

Компоненты

  • Комплексы молекул химических соединений и органеллы клетки.

Основные процессы

  • Биосинтез, фотосинтез
  • Регулирования химических реакций
  • Деление клетки
  • Привлечение химических элементов Земли и энергии Солнца в биосистеме

Науки, ведущих исследования на этом уровне

  • Генная инженерия
  • Цитогенетика
  • Цитология
  • Эмбриология Геология

Тканевый уровень организации жизни

Тканевый уровень представлен тканями, объединяющих клетки определенного строения, размеров, расположения и подобных функций. Ткани возникли в ходе исторического развития вместе с багатоклитиннистю. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическая, защитную, основную и ведущую ткани. На этом уровне происходит специализация клеток.

Научные дисциплины, которые осуществляют исследования на этом уровне: гистология.

Органный уровень организации жизни

Органный уровень представлен органами организмов. В простейших пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. В более совершенных организмов являются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация защищаемой в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень организации жизни

Представленный одноклеточными и многоклеточными организмами растений, животных, грибов и бактерий.

Компоненты

  • Клетка — основной структурный компонент организма. Из клеток образованы ткани и органы многоклеточных организмов

Основные процессы

  • Обмен веществ (метаболизм)
  • Раздражительность
  • Размножение
  • Онтогенез
  • Нервно-гуморальная регуляция процессов жизнедеятельности
  • Гомеостаз

Науки, ведущих исследования на этом уровне

  • Анатомия
  • Биометрия
  • Морфология
  • Физиология
  • Гистология

Популяционно-видовой уровень организации жизни

Представленный в природе огромным разнообразием видов и их популяций.

Компоненты

  • Группы родственных особей, объединенных определенным генофондом и специфическим взаимодействием с окружающей средой

Основные процессы

  1. Генетическая своеобразие
  2. Взаимодействие между лицами и популяциями
  3. Накопление элементарных эволюционных преобразований
  4. Осуществление микроэволюции и выработки адаптации к изменяющейся среде
  • Видообразования
  1. Увеличение биоразнообразия

Науки, ведущих исследования на этом уровне

  • Генетика популяций
  • Теория эволюции
  • Экология

Биогеоценотический уровень организации жизни

Представленный разнообразием природных и культурных экосистем во всех средах жизни.

Компоненты

  • Популяции различных видов
  • Факторы среды
  • Пищевые сети, потоки веществ и энергии

Основные процессы

  • Биохимический круговорот веществ и поток энергии, поддерживающих жизнь
  • Движимое равновесие между живыми оганизмамы и абиотической средой (гомеостаз)
  • Обеспечение живых организмов условиям проживания и ресурсами (пищей и убежищем)

Науки, ведущих исследования на этом уровне

  • Биогеография
  • Биогеоценология
  • Экология

Биосферный уровень организации жизни

Представленный выше глобальной формой организации биосистем — биосферой.

Структурные уровни организации живой материи

«Биология отрицает законы математики: при делении происходит умножение» Валерий Красовский

Уровни организации живого

Видео урок

Схема

Теория

Под уровнем организации живой материи понимают то функциональное место, которое данная биологическая структура занимает в общей системе организации мира.

Молекулярно-генетический (молекулярный) уровень

Биологическая система

Биологические макромолекулы (нуклеиновые кислоты, белки, углеводы) и другие вещества (липиды, АТФ и т.п.)

Элементарные процессы

Распад и синтез макромолекул в клетке, самосборка и матричное копирование макромолекул, генные мутации и т.д.

Характеристика

На этом уровне элементарной структурной единицей является ген (участок ДНК), а ДНК — носитель наследственной информации у всех живых организмов. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ превращение энергии, передача наследственной информации.

Субклеточный уровень

Биологическая система

Элементарные процессы

Деление полуавтономных органоидов (митохондрии, пластиды), сборка органоидов и т.д.

Характеристика

На уровне субклеточных (надмолекулярных) структур изучают строение и функции органоидов (хромосом, митохондрий, рибосом и др.), а также включений клетки.

Клеточный уровень

Биологическая система

Элементарные процессы

Жизненный цикл клетки. Митоз. Мейоз. Амитоз. Метаболизм и т.д.

Характеристика

Клетка — основная струк­турно-функциональная единица всех жи­вых организмов, элементарная живая система, единица размножения и развития всех живых организмов, обитающих на Земле. Минимальная единица, которой присущи все свойства живого.

Тканевый уровень

Биологическая система

Элементарные процессы

Регенерация ткани, дифференциация, специализация. и т.д.

Характеристика

Ткань – совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции. Этот уровень присутствует только у многоклеточных организмов

Органный уровень

Биологическая система

Элементарные процессы

Процессы, связанные с функциями органов: пищеварение, газообмен и т.д.

Характеристика

Орган – структурно-функциональное объединение нескольких типов тканей.

Организменный уровень

Биологическая система

Элементарные процессы

Процессы онтогенеза (индивидуальное развитие), включающие процессы эмбрионального и постэмбрионального развития, обмен веществ, размножение и т.д.

Характеристика

Организм — целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных на выполнении различных функций.

Популяционно-видовой уровень

Биологическая система

Популяция и вид

Элементарные процессы

Процессы, приводящие к видообразованию: дрейф генов, популяционные волны, дивергенция и т.д.

Характеристика

Популяция – это совокупность организмов одного и того же вида, достаточно долго проживающих на определенной территории и полностью или частично изолированные от других популяций. Вид – совокупность схожих особей, имеющих общее происхождение, свободно скрещивающихся между собой и дающие плодовитое потомство.

Биоценотический (экосистемный, биогеоценотический) уровень

Биологическая система

Элементарные процессы

Круговорот веществ и энергии, межвидовые взаимодействия, передача энергии по цепям питания, сукцессии и т.д.

Характеристика

Экосистема — биологическая система (биогеоценоз), состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними

Биосферный уровень

Биологическая система

Элементарные процессы

Глобальный круговорот веществ и превращение энергии и т.д.

Характеристика

Биосфера – оболочка Земли, заселенная живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности совокупность всех биогеоценозов, включает все явления жизни на Земле. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Термины

Список использованных источников

ЕГЭ. Биология. Пошаговая подготовка / Ю.А. Садовниченко. — Москва : Эксмо, 2015. — 320 с

Биология (Общие закономерности). 10 кл. : учебное пособие к элективному курсу для общеобразоват. организаций (углублённый уровень) / А.А. Вахрушев, М.А. Корженевская, А.П. Пуговкин, Н.А. Пуговкина, П.М. Скворцов. – М . : Баласс, 2015. – 400 с.: ил. (Образовательная система «Школа 2100»).

Теоретический вопрос ДНЯ

Советы, которые помогут эффективно подготовиться к ЕГЭ по БИОЛОГИИ

1. Познакомься с актуальными демоверсией, спецификацией, кодификатором на официальном сайте, чтобы четко понимать, что тебя ждет и какие требования предъявляются к уровню подготовки.

2. Определись, сколько баллов ты хотел бы получить.

3. Составь расписание своих занятий и старайся максимально его соблюдать. Регулярность занятий очень важна.

4. Используй несколько источников для подготовки: школьные учебники, пособия для поступающих в ВУЗы, видео уроки и т.п.

5. Главное – понимание! Старайся разобраться в теме, а потом можно зазубрить некоторые понятия.

6. Учись внимательно читать и понимать задание.

7. Начинай с легкого и постепенно усложняй материал. Но не бойтесь сложных заданий, если хочешь высокий балл.

8. Постоянно повторяй пройденный материал, решай тесты, задачи и теоретические вопросы.

Повторять рекомендуется сразу в течение 15-20 минут, через 8-9 часов и через 24 часа. Полезно повторять материал за 15-20 минут до сна и утром, на свежую голову.

9. Систематизируй материал, создай целостную и структурированную систему знаний.

10. И не забывай высыпаться, сбалансированно питаться и вести здоровый образ жизни. Это хорошо влияет на память:)

Кратко и понятно — схемы и конспекты (последние записи)

  • Теория симбиогенеза
  • Клеточная теория
  • Клетки человека
  • Болото
  • Тип Круглые черви — ароморфозы
  • Тип Плоские черви — ароморфозы
  • Правила эволюции
  • Тип Кишечнополостные — ароморфозы
  • Перья птиц
  • Дождевой червь в формате ЕГЭ

Последние видео

Последние видео:

Тематические тесты (последние записи)

  • Вопросы линии 2 — науки методы уровни — тест 2
  • Ткани растений — задание
  • Типы червей Плоские, Круглые, Кольчатые — задание
  • Гаметогенез — задание
  • Рефлексы — задание
  • Высшие растения — характеристика и жизненный цикл — тестовое задание
  • Размножение организмов — тестовые задания
  • Трудные вопросы ЕГЭ по биологии — эмбриональное развитие
  • Кишечнополостные — задания
  • Метаболизм — задания

Последние обновления

  • Типы питания
  • Побег
  • Виды плодов
  • Виды соцветий
  • Отличительные признаки растительной и животной клетки
  • Селекция
  • Осмос и его роль в живых организмах
  • Строение листа
  • Свойства воды
  • Даны срезы двух растений и их внешний вид. Определите экологическую группу по отношению к воде, к которой их относят

Последние видео:

Подписывайся на обновления, обсуждай вопросы в соцсетях

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: