Типы, состав и размещение судовых энергетических установок - ABCD42.RU

Типы, состав и размещение судовых энергетических установок

Типы судовых энергетических установок. Основные схемы мощности на винт.

Судовые энергетические установки в зависимости от вида главного двигателя делятся на паротурбинные, газотурбинные и дизельные.

Паротурбинная установка (ПТУ) представляет собой совокупность агрегатов, двигателей и устройств, объединенных единой тепловой схемой. Рабочее тело (водяной пар) создается в паровом котле или в парогенераторе. Пар соответствующих параметров (давления и температуры) вращает паровую турбину. Прошедший через турбину отработавший пар поступает в конденсатор, где превращается в воду (конденсат), которая далее используется для питания парового котла. Таким образом, пароводяной цикл замыкается. Паровая турбина через зубчатую передачу передает вращающий момент через судовой валопровод на гребной винт. Паровые турбоустановки (ПТУ) судовой валопровод на гребной винт. Паровые турбоустановки (ПТУ) отличаются высокой надежностью и относительной простотой обслуживания.

Газотурбинные установки отличаются тем, что в них главным двигателем является газовая турбина (газотурбинный двигатель), рабочее тело, для которой готовится в камере сгорания. В отличие от ПТУ для ГТУ не требуется громоздкий паровой котел. В результате ГТД является компактным и легким, имеющим высокую мощность. Это качество ГТД позволяет применять его в составе СЭУ достаточно эффективно, несмотря на меньшую экономичность. Однако, в связи с высокой скоростью вращения ротора ГТД его мощность не может быть передана на судовой валопровод непосредственно и поэтому необходимо применять промежуточные передачи мощность (зубчатые, гидравлические или комбинированные) с понижением числа оборотов. Выходящие из ГТД газы имеют высокую температуру (450…550ºС), а их количество весьма значительно. Это используется для получения водяного пара в утилизационном котле с дальнейшим применением пара для привода паровой турбины без дополнительных затрат топлива. В результате получается комбинированная газопаротурбинная установка (ГПТУ) или ГТУ с теплоутилизирующим контуром. Кроме того, ГТД может использоваться в качестве форсажного для достижения максимальной скорости хода в СЭУ с ПТУ или дизельной установкой.

Дизельные СЭУ являются наиболее распространенными энергоустановками. В качестве главных двигателей в дизельных СЭУ применятся двигатель внутреннего сгорания – дизель. Дизели бывают малооборотные (n=50…250 об/мин), которые присоединяются к валопроводу непосредственно (прямая передача); среднеоборотные (n=250…750 об/мин) с передачей мощности на винт через зубчатую или гидравлическую передачу; высокооборотные (n=750…2500об/мин) с зубчатой или электрической (через гребной электродвигатель) передачи мощности на винт.

СXEМЫ МОЩHОСТИ HА ВИHТ.

По способу передачи мощности от двигателя к движителю (гребному винту) ССУ можно условно разделить на следующие основные виды:

1. ПРЯМАЯ — установка с винтом фиксированного шага (ВФШ) или винтом регулируемого шага (ВРШ). Это наиболее простая и надёжная установка. В ней коленчатый вал двигателя жёстко соединён с гребным валом, при этом потери будут минимальными. Частота вращения главного двигателя (ГД) обычно не превышает 500 об/мин, что повышает надёжность работы, удобство эксплуатации, большой моторесурс и малый удельный расход топлива. Однако, нельзя одновременно получить высокие КПД винта т.к. это ограничено большими оборотами двигателя.

2. РЕДУКТОРНАЯ — установка с зубчатой редукторной передачей. Такая установка с двумя и более ГД обладает повышенной живучестью и манёвренностью по сравнению с прямой передачей. Она включает в себя редуктор, состоящий из набора зубчатых колёс и валов. Подбором передаточного числа (i — отношение диаметров или числа зубьев колёс) можно получить самую выгодную частоту вращения.

Недостаток: конструктивное усложнение, меньший моторесурс, больший удельный расход топлива, относительно низкий КПД за счёт потерь в редукторе.

3. ЭЛЕКТРИЧЕСКАЯ — установка с электрической передачей. Такая передача состоит из гребного электродвигателя, электропроводников, генератора и дизеля (ДГ). Отсутствует жёсткая связь. Дизель-генераторов может быть несколько от 2-х до 8. Дизель вращает генератор, вырабатывающий электроэнергию и она, через ГРЩ, поступает на электродвигатель, который, в свою очередь вращает гребной вал и винт судна. При этом происходит трансформация энергии — механическая преобразуется в электрическую и наоборот. Такие суда называют дизель-электроходами.

Преимущества: высокие маневренные качества судна; возможность применения высокооборотных, нереверсивных ДВС и размещение их в любой части корпуса судна; повышение живучести всей ССУ.

Недостатки: большая стоимость установки; низкий КПД передачи.

Для сравнения, если КПД прямой передачи принять за 1, то КПД редукторной передачи будет ≈ 0,96, КПД электрической будет ≈ 0,87.

Схемы передачи мощности ДВС на гребной вал:

На рисунке а дана принципиальная схема силовой установки с прямой передачей мощности от главного ДВС 9 с маховиком 8 на гребной вал 3. Коленчатый вал двигателя жестко соединен с гребным валом при помощи короткого упорного вала 6 и двух промежуточных валов 4, установленных в опорных подшипниках 5. Гребной вал вращается в дейдвудной трубе 2. Упорный вал 6 выполнен заодно с упорным гребнем, который передает осевое усилие гребного винта 1 упорному подшипнику 7.
Преимуществами прямой передачи являются высокий КПД передачи, простота ее устройства, надежность в работе.
Недостаток прямой передачи — при работе двигателя на долевых нагрузках его мощность используется неэффективно, что приводит к значительному увеличению удельного расхода топлива. Кроме того, жесткая связь между двигателем и гребным винтом ухудшает маневренные качества судна, а частые реверсы значительно снижают моторесурс двигателя.
Редукторные передачи используются в судовых силовых установках с быстроходными ДВС, применение которых дает определенные преимущества и в первую очередь уменьшение габаритных размеров и массы установок. В последние годы такие передачи нашли применение в сочетании со среднеоборотными ДВС, так называемые дизель-редукторные агрегаты.
Силовые установки с редукторной передачей чаще всего включают в свой состав два главных ДВС, от которых мощность передается на один гребной вал через редуктор. Между коленчатым валом главных ДВС и редуктором устанавливаются индукционные или гидравлические муфты, которые сглаживают колебания крутящего момента двигателя, обеспечивая плавность зацепления шестерен редуктора, быстрое отключение валопровода от коленчатого вала, отключение одного из ДВС при неисправностях и т. д. Широко применяются фрикционные муфты.
Редукторные передачи дают возможность применения в составе силовых установок обратимых электрических валомашин,позволяющих осуществлять отбор мощности от главных двигателей для питания судовых потребителей или, наоборот, использовать мощность судовой электростанции для увеличения скорости движения судна.
На рисунке б дана принципиальная схема силовой установки с редукторной передачей от главных двигателей 5 к гребному винту 1. Главные двигатели через муфты 4 приводят во вращение валы редуктора с шестернями 3 и 6, которые вращают зубчатое колесо, соединенное с валопроводом 2 и гребным винтом 1. Усилие гребного вала воспринимается упорным подшипником, установленным в корпусе редуктора.
К недостаткам редукторных передач (в сравнении с прямыми) относятся сложность конструкции, меньшие моторесурс и КПД передачи. Несмотря на эти недостатки, возможность рационального использования мощности двигателей при различных режимах работы судна, а также применение быстроходных ДВС относительно небольших размеров и массы делают редукторную передачу наиболее перспективной для промысловых судов.
На рисунке вдана принципиальная схема силовой установки с электрической передачей мощности от главных двигателей к гребному винту 1. Главные ДВС 5 приводят в действие генераторы 4, вырабатывающие электрический ток, который подводится к распределительному щиту 3. От него электроэнергия подается к потребителям, в том числе и к гребному электродвигателю 2, соединенному с гребным винтом 1.
Таким образом, происходит двойная трансформация энергии, что приводит к увеличению потерь в передаче и снижению ее КПД.
Электрическая передача имеет ряд преимуществ перед прямой и редукторной. Ее применение позволяет: использовать нереверсивные быстроходные ДВС, размещая их независимо от гребных валов; эффективно использовать мощность силовой установки независимо от скорости вращения гребного винта; легко осуществлять реверс гребного электродвигателя (гребного винта) с помощью переключателей из машинного отделения и рулевой рубки; использовать главные генераторы для обеспечения электроэнергией вспомогательных механизмов.
Несмотря на указанные преимущества силовые установки с электрической передачей на промысловых судах широкого применения не получили из-за сложности, высокой стоимости и низкого КПД оборудования по сравнению с другими видами передач. К недостаткам также относится необходимость увеличения числа обслуживающего персонала (в штат машинной команды дополнительно вводятся электромеханики). В настоящее время такие установки применяются главным образом на производственных рефрижераторах, консервных траулерах и некоторых транспортных судах.

Читайте также  Статистика занятости и безработицы

Типы, состав и размещение судовых энергетических установок

Судовая энергетическая установка представляет собой сложный комплекс взаимосвязанных механизмов, теплообменных аппаратов, устройств и трубопроводов, предназначенных для обеспечения движения судна с заданной скоростью, а также для снабжения энергией различных механизмов, систем, устройств и т. п.

Основная часть вырабатываемой судовой энергетической установкой энергии расходуется на перемещение судна по воде под действием упора, создаваемого работой судового движителя (гребного винта, гребного колеса, крыльчатого движителя и т. д.), который приводится в движение главным судовым двигателем.

На судах применяют в основном двигатели, в которых механическая энергия вырабатывается в результате преобразования тепловой энергии, образующейся при сжигании топлива. В зависимости от используемой рабочей среды такие двигатели, называемые тепловыми, подразделяют на две основные группы — паровые и двигатели внутреннего сгорания.

Паровые двигатели — паровые турбины и машины (на старых судах) — используют энергию пара, который образуется в паровых котлах при сжигании топлива в их топках.

Двигатели внутреннего сгорания используют энергию газов, образующихся при сгорании топлива в самих двигателях. К этой группе относятся также газовые турбины, которые используют энергию газов, образующихся при сгорании топлива в специальных камерах или генераторах газа.

В зависимости от способа превращения тепловой энергии в механическую в двигателях последние подразделяют на следующие типы: поршневые, у которых возвратно-поступательное движение поршней под давлением рабочей силы преобразуется во вращательное движение вала; турбинные — вал вращается под действием скоростного потока частиц пара или газа, воздействующего на лопатки насаженного на вал рабочего колеса; реактивные, у которых тяга создается под влиянием реакции струи газов, вытекающей из сопла двигателя.

На современных судах устанавливают следующие типы главных двигателей: двигатели внутреннего сгорания, паровые турбины, газовые турбины. Каждому типу соответствует свой способ передачи крутящего момента от главного двигателя к гребному валу.

Прямая передача от главного двигателя к гребному валу осуществляется при использовании малооборотных судовых дизелей. При средне- и высокооборотных дизелях вращение гребному валу передается с помощью зубчатой передачи — редуктора. Редукторную передачу применяют также в паротурбинных установках (ПТУ) (при этом турбина делает 5000—6000 об/мин. а гребной вал — 80—200 об/мин), а также в установках из нескольких любых двигателей, работающих на один гребной вал.

На гражданских судах наибольшее распространение получили дизельные и паротурбинные установки. Первые применяют почти на всех новых судах с мощностью энергетической установки до 20 000—30 000 кВт. Паротурбинные установки целесообразно использовать при мощностях от 15 000—18 000 до 30 000 — 38 000 кВт на один вал, однако в связи с созданием мощных экономичных дизелей, а также резким ростом цен на топливо, число паровых турбин даже на крупных морских судах существенно сократилось. В 1986 г. в составе мирового торгового флота около 98 %. судов имели дизельные установки. Применение газотурбинных установок (ГТУ) на больших судах носит пока экспериментальный характер, зато на малых быстроходных судах, например на судах на подводных крыльях, они получили широкое распространение. На судах, имеющих по условиям эксплуатации два ходовых режима, отличающихся по потребляемой мощности и продолжительности, применяют комбинированные установки.

Они состоят из двигателей двух типов — основного (дизеля или паровой турбины), обеспечивающего длительный экономический ход, и так называемого форсажного двигателя, предназначенною для резкого кратковременного увеличения мощности с целью получения большой скорости хода. В качестве форсажных двигателей обычно применяют менее экономичные, но зато значительно более компактные газовые турбины. Такие комбинированные судовые энергетические установки применяют на тех судах, которым необходимо точно выдерживать расписание независимо от погоды (некоторые линейные пассажирские, контейнерные, накатные и т. п. суда). К комбинированным относятся также такие установки, в которых двигатели обоих типов связаны единым термодинамическим циклом, с целью существенного повышения общего КПД установки. В таких установках теплота отходящих газов двигателя одного типа используется в утилизационном парогенераторе для приготовления рабочего пара или газа для двигателя другого типа.

На некоторых судах, которые должны обладать повышенной маневренностью — ледоколах, паромах, плавучих кранах, портовых буксирах, — используют установки с электродвижением; гребные винты вращаются гребными электродвигателями, которые питаются электрическим током от генераторов, имеющих в качестве первичного двигателя дизель, паровую или газовую турбины. Такие суда называют соответственно дизель-электроходами, турбоэлектроходами или газотурбоэлектроходами.

В состав каждой энергетической установки входят: главный двигатель — для создания необходимой мощности, которая обеспечивает судну заданную скорость; движитель — для преобразования энергии вращения двигателя в упор, приложенный к судну; валопровод — для передачи мощности от главного двигателя к движителю (если главный двигатель имеет большее число оборотов, чем движитель, между последним и валопроводом устанавливают понижающий редуктор); вспомогательные механизмы для обеспечения судна электроэнергией, паром для бытовых нужд, опресненной водой и пр.

Энергетическую установку размещают на судне в специальных помещениях, которые называются отделениями. В зависимости от типа установки различают: котельные отделения, в которых размещают главные котлы с обслуживающими их механизмами; машинные отделения, в которых располагают главные двигатели с обслуживающими их механизмами; отделения вспомогательных механизмов, в которых размещают механизмы судовой электростанции, испарительные установки, рефрижераторные установки и пр.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Судовая энергетическая установка (СЭУ) – назначение, классификация, состав

Судовой энергетической установкой называется комплекс технических средств для обеспечения движения судна с необходимой скоростью, выработки механической, тепловой, электрической энергии, и обеспечения этими видами энергии всех потребителей для безопасного и эффективного функционирования судна в соответствии с его типом и назначением.

В состав СЭУ входят (рис. 1):

  • главная энергетическая установка (ГЭУ) – комплекс технических средств для обеспечения поступательного движения судна и его маневрирования, а также обеспечения всеми видами энергии потребителей судна на ходу;
  • вспомогательная энергетическая установка (ВЭУ) – комплекс технических средств для обеспечения судна всеми необходимыми видами сред и энергий, обеспечения заданного функционирования ГЭУ и общесудовых потребителей, не связанных с движением судна;
  • электроэнергетическая система (ЭЭС) – комплекс источников электроэнергии и распределительных устройств, обеспечивающих все потребности судна электроэнергией.

Судовые главные энергетические установки могут быть классифицированы по следующим признакам:

  • по роду топлива:
    • -работающие на природном органическом топливе;
    • -использующие ядерную энергию;
  • по роду рабочего тела:
    • — на паровые – в качестве рабочего тела используется водяной пар;
    • — газовые – в качестве рабочего тела используются продукты сгорания органического топлива или нагретый газ;
  • по типу главного двигателя:
    • — на дизельные;
    • — газотурбинные;
    • — паротурбинные;
    • — комбинированные;
  • по способу передачи мощности к движителям:
    • — с прямой (непосредственной) передачей;
    • — с механической (редукторной) передачей;
    • — с гидравлической передачей;
    • — с электрической передачей;
    • — с комбинированной передачей;
  • по числу валопроводов:
    • -на одновальные;
    • -многовальные;
  • по числу главных двигателей, работающих на один вал:
    • — на одномашинные;
    • — многомашинные;
  • по способу обеспечения реверса:
    • — с реверсивными главными двигателями;
    • — с реверсивными главными передачами;
    • — с реверсивным движителем (ВРШ и др.);
  • по степени автоматизации, способу управления и обслуживания:
    • — на неавтоматизированные;
    • — частично автоматизированные – с местным постом управления (ПУ) и постоянной вахтой в машинном отделении (МО);
    • — автоматизированные с дистанционным автоматическим управлением (ДАУ), с постоянной вахтой в центральном посту управления (ЦПУ) и периодическим обслуживанием МО (степень автоматизации А2);
    • автоматизированные с ДАУ, без постоянной вахты в ЦПУ и МО и с периодическим обслуживанием (степень автоматизации А1).
Читайте также  Храм Василия Блаженного)

Общая структурная схема судовой энергетической установки показана на рис. 1.

Элементы СЭУ, входящие в состав главной энергетической установки, называют главными: главные двигатели, главные электрогенераторы, главные передачи, главные насосные агрегаты и т.д.

В состав ГЭУ обычно входят генераторная часть – в которой происходит генерирование рабочего тела или сообщение ему дополнительной энергии, и исполнительная часть – в которой происходит преобразование энергии рабочего тела из одной формы в другую. В некоторых типах тепловых двигателей (двигателях внутреннего сгорания, газотурбинных двигателях) генераторная и исполнительная части совмещены в одном агрегате.

В качестве генераторной части в различных типах установок могут использоваться:

  • свободнопоршневые генераторы газа – СПГГ;
  • ядерные газотурбинные установки – ЯГТУ;
  • ядерные паропроизводящие установки – ЯППУ;
  • главные паровые котлы;

В качестве исполнительной части могут использоваться:

  • газовая турбина – в совокупности с СПГГ или ЯГТУ;
  • паровая турбина – в совокупности с ЯППУ или главными паровыми котлами;
  • паровая машина – в совокупности с главными паровыми котлами.

Помимо рассмотренных выше основных элементов ГЭУ в ее состав также входят:

  • системы и вспомогательные механизмы, обслуживающие работу главных двигателей, механизмов и теплообменных аппаратов;
  • системы дистанционного и автоматического управления ГЭУ;
  • системы аварийно-предупредительной сигнализации и защиты элементов ГЭУ.

Механическая энергия, вырабатываемая главным двигателем, через главную передачу и валопровод передается на движитель. Совокупность главного двигателя, главной передачи, валопровода, движителя и корпуса судна называют пропульсивным комплексом.

В состав вспомогательной энергетической установки, в зависимости от типа и основного назначения судна, могут входить:

  • вспомогательная паропроизводящая (котельная) установка;
  • водоопреснительная установка;
  • холодильная установка;
  • установка кондиционирования воздуха;
  • компрессорная установка;
  • гидравлическая установка;

В состав электроэнергетической системы судна обычно входят:

  • источники электроэнергии (первичные двигатели, электрогенераторы, аккумуляторные батареи);
  • устройства преобразования электроэнергии (статические и машинные преобразователи, трансформаторы);
  • устройства распределения электроэнергии;
  • силовые сети;
  • потребители электроэнергии;
  • системы регулирования и защиты элект

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Судовая энергетическая установка

  • Судовая энергетическая установка — комплекс машин, механизмов, теплообменных аппаратов, источников энергии, устройств и трубопроводов — предназначенных для обеспечения движения судна, а также снабжения энергией различных его механизмов.

Судовая энергетическая установка — бортовой комплекс систем и агрегатов, преобразующий первичную энергии органического (химического) или атомного топлива в тепловую энергию, с последующим частичным преобразованием её: а) в механическую энергию — потребную для приведения в действие движителя судна и бортовых механических систем и устройств; б) в электрическую энергию — потребляемую различными бортовыми системами, устройствами и аппаратурой.

Судовая энергетическая установка обеспечивает: необходимые условия для нормальной жизнедеятельности экипажа; потребные скорость хода, дальность плавания и маневренность судна; потребное функционирование систем бортового оборудования и вооружения;

В состав энергетической установки входят:

ГЭУ — главная энергетическая установка (приводящая судно в движение и работающая на собственные нужды) .Вспомогательные механизмы — дизельные генераторы, котлы, компрессоры, опреснительные установки.ГЭУ совместно с гребным двигателем, валопроводом и движителем образует пропульсивную установку.

Различают следующие виды ЭУ:

В этой установке перегретый водяной пар высокого давления (температура более 300°С, давление более 50 бар) вырабатывается в главном котле или в ядерном реакторе. Перегретый пар поступает в паровую турбину, которая через многоступенчатый редуктор приводит в движение гребной винт. Отработавший пар поступает в конденсатор, в котором поддерживается вакуум для более полного использования энергии пара. Образовавшаяся вода поступает в теплый ящик, затем к питательным насосам котла или ядерного реактора.

Для больших судов этот тип до середины 20 века был основным, но сейчас он вытесняется мощными дизельными энергетическими установками.

Основой классической дизельной ГЭУ является низкоборотный двухтактный дизельный двигатель. Исполнение двигателя только рядное, количество цилиндров обычно не менее 6. Двигатель соединяется с гребным валом напрямую без каких либо передач. Для реверсирования гребного винта изменяется порядок работы цилиндров и двигатель запускается в другую сторону. Поскольку судно имеет обычно только один подобный двигатель, его конструкция выполняется максимально надежной. Двигатель может продолжать работать при выходе из строя одного или нескольких цилиндров, при выходе из строя турбокомпрессора, при загрязнении масла, при затоплении или пожаре в машинном отделении. Ярким примером является самый мощный двигатель в мире Wärtsilä-Sulzer RTA96-C.

Данная судовая установка является строго главной и для привода вспомогательных механизмов обычно не применяется.

Установка включает в себя обычно несколько дизельных двигателей, которые работают через редуктор на гребной винт. Каждый двигатель может иметь как свой редуктор, так и два двигателя могут работать на общий редуктор на гребной винт. Дизельные двигатели применяются в общем те же, которые используются на дизельных электрических станциях и тепловозах, но имеют специальное морское исполнение.

Основой установки являются дизельный двигатель и генератор, смонтированные на подрамнике и образующие дизель-генератор. На судне не может быть менее двух дизель-генераторов, обычно их количество составляет не менее трех и может доходить до восьми. Дизель — генераторы могут использоваться для привода гребных электродвигателей (главный дизель-генератор) или использоваться в дополнение к классической дизельной ГЭУ или к дизель-редукторной ГЭУ (вспомогательный дизель-генератор), вырабатывая электроэнергию для судовых нужд.

Например, дизель-электрическая установка круизных судов типа Oasis включает в себя шесть дизель-генераторов общей мощностью от 132 000 л.с. ЭУ снабжает электроэнергией три гребные установки Azipod мощностью 20 МВт каждая, четыре подруливающих устройства мощностью по 5,5 МВт, и обеспечивает прочие нужды судна.

Основой установки является мощная газовая турбина, работающая обычно на флотском мазуте, которая через многоступенчатый редуктор приводит в движение гребной винт или генератор без использования редуктора. Преимущества — простота и высокая удельная мощность, недостатки — низкая топливная экономичность. Такие установки применяются в основном на военных кораблях.

Этот класс установок является отдельным видом паросиловой установки (см. выше). Высокотемпературный перегретый пар вырабатывается одним или несколькими ядерными реакторами и направляется в паровые турбины, который могут работать через редуктор на гребной винт или приводить в движение генератор. Отличия от паросиловой ЭУ — гораздо более высокие требования к резервированию, надежности, материалам, и к радиационной защите. Установка включает в себя и резервную дизель-электрическую ЭУ.

На судне энергетическую установку размещают в специальных помещениях:

* Отделения вспомогательных механизмов — в том числе: дизельгенераторное, холодильное, компрессорное, аккумуляторное и др.

Связанные понятия

Бензи́новые электроста́нции — компактные автономные силовые установки для производства электрической энергии. Используются в качестве основного или резервного источника электроснабжения. Виды генераторов.

Система дизель-насосного агрегата представляет собой сборную систему впрыска дизельного топлива высокого давления, которая тесно связана с насосом-форсункой, и предназначена для использования на коммерческих грузовых автомобилях с дизельными двигателями.Системы используют индивидуальные насосы ТНВД, установленные на блоке двигателя для каждого цилиндра, в первую очередь предназначен для двигателей с одним распределительным валом, расположенном в головке или в блоке цилиндров. Топливные насосы приводятся.

Для работы на газообразных топливах транспортные средства оснащаются газобаллонным оборудованием (ГБО).

Читайте также  Сравнительная характеристика различных типов производства

Судовая энергетическая установка

Из Википедии — свободной энциклопедии

Судовая энергетическая установка — комплекс машин, механизмов, теплообменных аппаратов, источников энергии, устройств и трубопроводов — предназначенных для обеспечения движения судна, а также снабжения энергией различных его механизмов.

Судовая энергетическая установка — бортовой комплекс систем и агрегатов судна, преобразующий первичную энергии органического (химического) или атомного топлива в тепловую энергию, с последующим частичным преобразованием её: а) в механическую энергию — потребную для приведения в действие движителя судна и бортовых механических систем и устройств; б) в электрическую энергию — потребляемую различными бортовыми системами, устройствами и аппаратурой.

Судовая энергетическая установка обеспечивает: потребные скорость хода, дальность плавания и маневренность судна; потребное функционирование систем бортового оборудования и вооружения; необходимые условия для нормальной жизнедеятельности экипажа.

В состав энергетической установки входят:

  • ГЭУ — главная энергетическая установка (приводящая судно в движение и работающая на собственные нужды);
  • Вспомогательные механизмы — дизельные генераторы, котлы, компрессоры, опреснительные установки.

ГЭУ совместно с гребным двигателем, валопроводом и движителем образует пропульсивную установку.

Различают следующие виды ЭУ:

Энциклопедичный YouTube

Субтитры

Содержание

  • 1 Паросиловая ЭУ
  • 2 Дизельная ГЭУ
  • 3 Дизель-редукторная ГЭУ
  • 4 Дизель-электрическая ЭУ
  • 5 Газотурбинная ЭУ
  • 6 Ядерная ЭУ
  • 7 См. также
  • 8 Литература
  • 9 Ссылки

Паросиловая ЭУ

В этой установке перегретый водяной пар высокого давления (температура более 300°С, давление более 50 бар) вырабатывается в главном котле или в ядерном реакторе. Перегретый пар поступает в паровую турбину, которая через многоступенчатый редуктор приводит в движение гребной винт. Отработавший пар поступает в конденсатор, в котором поддерживается вакуум для более полного использования энергии пара. Образовавшаяся вода поступает в теплый ящик, затем к питательным насосам котла или ядерного реактора.

Для больших судов этот тип до середины 20 века был основным, но сейчас он вытесняется мощными дизельными энергетическими установками.

Дизельная ГЭУ

Основой классической дизельной ГЭУ является низкооборотный двухтактный дизельный двигатель. Исполнение двигателя только рядное, количество цилиндров обычно не менее 6. Двигатель соединяется с гребным валом напрямую без каких либо-передач. Для реверсирования гребного винта изменяется порядок работы цилиндров и двигатель запускается в другую сторону. Поскольку судно имеет обычно только один подобный двигатель, его конструкция выполняется максимально надежной. Двигатель может продолжать работать при выходе из строя одного или нескольких цилиндров, при выходе из строя турбокомпрессора, при загрязнении масла, при затоплении или пожаре в машинном отделении. Ярким примером является самый мощный двигатель в мире Wärtsilä-Sulzer RTA96-C.

Данная судовая установка является строго главной и для привода вспомогательных механизмов обычно не применяется.

Дизель-редукторная ГЭУ

Установка включает в себя обычно несколько дизельных двигателей, которые работают через редуктор на вал гребного винта. Каждый двигатель может иметь как свой редуктор, так и два двигателя могут работать на общий редуктор гребного вала. Дизельные двигатели применяются в общем те же, которые используются на дизельных электрических станциях и тепловозах, но имеют специальное морское исполнение.

Дизель-электрическая ЭУ

Основой установки являются дизельный двигатель и генератор, смонтированные на подрамнике и образующие дизель-генератор. На судне не может быть менее двух дизель-генераторов, обычно их количество составляет не менее трех и может доходить до восьми. Дизель-генераторы могут использоваться для привода гребных электродвигателей (главный дизель-генератор) или использоваться в дополнение к классической дизельной ГЭУ или к дизель-редукторной ГЭУ (вспомогательный дизель-генератор), вырабатывая электроэнергию для судовых нужд.

Например, дизель-электрическая установка круизных судов типа Oasis включает в себя шесть дизель-генераторов общей мощностью от 132 000 л.с. ЭУ снабжает электроэнергией три гребные установки Azipod мощностью 20 МВт каждая, четыре подруливающих устройства мощностью по 5,5 МВт, и обеспечивает прочие нужды судна.

Газотурбинная ЭУ

Основой установки является мощная газовая турбина, работающая обычно на флотском мазуте, которая через многоступенчатый редуктор приводит в движение гребной винт или генератор без использования редуктора.
Преимущества — простота и высокая удельная мощность, недостатки — низкая топливная экономичность.
Такие установки применяются в основном на военных кораблях.

Ядерная ЭУ

Этот класс установок является отдельным видом паросиловой установки (см. выше). Высокотемпературный перегретый пар вырабатывается одним или несколькими ядерными реакторами и направляется в паровые турбины, который могут работать через редуктор на гребной винт или приводить в движение генератор. Отличия от паросиловой ЭУ — гораздо более высокие требования к резервированию, надежности, материалам, и к радиационной защите. Установка включает в себя и резервную дизель-электрическую ЭУ.

На судне энергетическую установку размещают в специальных помещениях:

  • Машинные отделения
  • Котельные отделения
  • Реакторный отсек
  • Отделения вспомогательных механизмов — в том числе: дизельгенераторное, холодильное, компрессорное, аккумуляторное и др.
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: