Трансгенные растения и почвенная биота - ABCD42.RU

Трансгенные растения и почвенная биота

Трансгенные растения и их экология

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

Описание презентации по отдельным слайдам:

Описание слайда:

Трансгенные растения
и их экология
Подготовила:

Описание слайда:

ЧТО ТАКОЕ ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ РАСТЕНИЙ?
Генетическая инженерия – это технология получения новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм, в результате которого достигается их включение и активность в этом организме и у его потомства

Описание слайда:

Растения в отличие от животных обладают уникальным свойством …

– каллус (масса недифференцированных клеток) табака, полученный из единичных клеток;
– органогенный каллус,полученный из каллуса табака при его перенесении на среду с цитокинином;
– регенерация растений табака из органогенного каллуса

Описание слайда:

Какие задачи необходимо решить для конструирования растений:
выделить и идентифицировать отдельный ген, соответствующий фрагментам ДНК или РНК;
разработать методы, обеспечивающие включение гена в наследственный аппарат растительной клетки;
регенерировать из единичных клеток нормальное растение с измененным генотипом;

Описание слайда:

Опухолеобразующим агентом является Ti-плазмида, содержащая область Т-ДНК (трансформирующая ДНК), которая интегрируется в растительный геном; vir-область, включающую гены, продукты которых, обеспечивают вырезание и перенос Т-ДНК в растительную клетку; tra-область, где локализованы гены, контролирующие конъюгацию бактерий, и ori-область, содержащую гены, продукты которых обеспечивают репликацию Ti-плазмиды.

Описание слайда:

Процесс трансформации можно разделить на четыре этапа:
прикрепление бактерии к стенке растительной клетки,
проникновение Т-ДНК внутрь клетки растения,
интеграция Т-ДНК в геном растения
экспрессия Т-ДНК.

Описание слайда:

Использование Ti-плазмиды в качестве вектора.
Сначала Т-ДНК вырезают из Ti-плазмиды рестриктазами и клонируют в pBR322
E. coli. Затем в клонированную ДНК встраивают чужеродный ген. Полученной гибридной плазмидой заражают агробактерии; Т-ДНК рекомбинирует с Т-ДНК гибридной плазмиды с образованием плазмид, несущих гетерологичный ген. С помощью таких агробактерий получают трансгенные растения

Описание слайда:

Ген bt (Bacillus thuringiensis) кодирует 1178 аминокислот и локализован в бактерии на плазмиде. Показано получение фрагмента гена bt, достаточного для устойчивости растений к насекомым. Дана схема встраивания этого фрагмента в Т-ДНК вектор между LB(левой) и RB (правой) его границами. В векторе былиспользован также удвоенный промотор CAMV, который увеличивал экспрессию bt-гена в пять раз.Растения хлопка были трансформированы этим вектором через агробактериальную инфекцию. Транс-генные растения оказались устойчивыми к личинкам большого числа видов насекомых

Описание слайда:

Разноцветные цветки трансгенных растений петунии в сравнении с одноцветным бордовым цветком нетрансформированного растения

Описание слайда:

Два подхода для создания трансгенного организма
Первый подход заключается в том, что в имеющийся организм вносится дополнительные генетический материал. В традиционной селекции это половая гибридизация, включающая различные типы скрещиваний между представителями одного и того же вида или нескольких родственных видов. Генетическая инженерия позволяет осуществлять перенос генов от весьма отдаленных в эволюционном плане: перенос в растения генов, например, от микроорганизмов или животных (горизонтальный или неполовой перенос генетического материала).
Второй подход – это появление новых признаков без внесения дополнительного генетического материала за счет изменения регуляции работы определенных генов. В традиционной селекции такая регуляция может достигаться индукцией мутаций отдельных генов или хромосомных перестроек.

Описание слайда:

Источники неблагоприятных последствий для окружающей среды.
Характер действия экологических рисков.

Выделяют следующие экологические риски:
появление новых, более агрессивных сорняков в результате генетической модификации или переноса трансгенов, способствующих повышению агрессивности вида, диким родственным видам;
миграция и последующая интрогрессия трансгена в дикие популяции в результате вертикального или горизонтального переноса генов;
воздействие продукта трансгенов на организмы, не являющиеся мишенью их запланированного действия;
появление живых организмов, резистентных или толерантных к продуктам трансгенов;
выявление трансгенных вирусных ДНК (РНК) на естественную эволюцию вирусов путем транскапсидации, синергизма, рекомбинации;
сокращение биологического (генетического) разнообразия в результате изменения естественных биоценозов, вытеснения местных сортов, преобладания в агропроизводстве монокультуры.

Трансгенные растения и почвенная биота

  • Главная
  • Новые рефераты
  • Популярные
  • Добавить реферат
  • Поиск
  • Контакты

Трансгенные растения и почвенная биота

Первые устойчивые к вредителям растения, созданные с помощью методов генной инженерии, были введены в культуру в 90-х годах прошлого столетия. Эти генетически модифицированные растения (Bt-культуры) несут гены грамположительной аэробной спорообразующей бактерии Bacillus thuringiensis, которая синтезирует параспоральные (локализованные рядом со спорой) кристаллические образования, содержащие d-эндотоксины — Cry-белки, убивающие личинок насекомых разных отрядов. Замечу, препараты из смеси клеток, спор и параспоральных кристаллов применяются уже более полувека (первый промышленный инсектицид «Спореин» был создан во Франции в 1938 г.). С тех пор они считаются одними из наиболее экологически безопасных средств защиты растений, так как этот класс пестицидов токсичен для теплокровных животных лишь в концентрациях, в несколько тысяч раз превышающих дозы, используемые при однократной обработке полей.

В настоящее время в сельском хозяйстве используется уже около тридцати Bt-культур. Самые популярные из них — кукуруза, хлопок, картофель, гибрид рапса «канола» (от англ. canada oil low acid — канадское слабокислое масло), рис, брокколи, арахис, баклажан, табак. Большинство сортов трансгенной кукурузы несут ген белка Cry1Ab, защищающий от опасного вредителя — личинок кукурузного, или стеблевого, мотылька (Ostrinia nubilalis).

В 2001 г. генетически модифицированные растения занимали уже более 12 млн га в мире, причем около половины из них приходилось на долю трансгенной кукурузы. 99% всех Bt-культур выращивают в четырех странах: США, Аргентине, Канаде и Чили [1]. В США площадь полей Bt-кукурузы в 2000 г. составляла более 8 млн га (около четверти плантаций), а Bt-хлопка — 2.4 млн га (около половины посевов). Экономическая польза таких растений очевидна: по оценке Агентства по защите окружающей среды США (U.S. Enviromental Protection Agency), использование в этой стране только Bt-зерновых культур приводит к ежегодному сокращению применения синтетических инсектицидов на площади примерно 3 млн га и позволяет сэкономить 2.7 млрд долл. США [1].

О возможном негативном влиянии трансгенных сельскохозяйственных культур на окружающую среду до недавнего времени лишь робко предупреждали экологи. Сторонники же генетической модификации растений, напротив, убеждали в их полной экологической безопасности, опираясь на результаты лабораторных тестов и опыт выращивания этих культур в естественных условиях. (Как впоследствии оказалось, применявшиеся в некоторых лабораторных экспериментах методики и объекты тестирования были не адекватны поставленным задачам, но об этом чуть позже.) Лишь сейчас, спустя десятилетие после начала промышленного выращивания трансгенных культур, становится более или менее очевидно, какого рода ущерб они могут наносить окружающей среде.

Появляется все больше свидетельств того, что использование Bt-растений может иметь долгосрочный негативный эффект, экономический ущерб которого пока даже трудно оценить. Во-первых, Bt-кукуруза производит в 1.5-2 тыс. раз больше эндотоксина, нежели вносится при однократной обработке полей химикатами, содержащими Bt-токсин. Во-вторых, культивирование Bt-кукурузы приводит к накоплению Bt-токсинов в почве в результате действия многих факторов: выделений корней, отложения пыльцы, разложения растительных остатков. В-третьих, разложение трансгенных растений происходит значительно медленнее, нежели обычных культур, а биологическая активность почв, занятых генетически модифицированными растениями, заметно ниже, чем на контрольных участках.

Bt-токсины в почве

После сбора урожая трансгенной кукурузы около десяти процентов Bt-токсинов остается на полях в растительных остатках. И только с их разложением происходит и деградация Cry-белков в естественных условиях. По данным швейцарских исследователей, концентрация токсина Cry1Ab в растительных остатках резко сокращается (до 20-38% от количества в живых растениях) через два месяца после уборки урожая и остается примерно на том же уровне в течение зимы [2]. Лишь с наступлением весны начинается дальнейшая деградация Bt-токсина, однако и по истечении 200 дней 0.3% от исходного его количества остается на полях. Максимальный же срок, в течение которого сохраняются Cry-белки, оказавшиеся в почве в результате выделений корней и разложения растительных остатков, достигает 350 дней [3]. Bt-токсины остаются биологически активными в течение столь длительного времени (фактически до года) благодаря тому, что находятся в связанном состоянии с поверхностно активными почвенными частицами (глины, гумуса и т.д.); это-то и защищает их от разложения микроорганизмами.

Эти результаты получены сравнительно недавно и принципиально отличаются от более ранних, проведенных в лабораторных условиях, когда было установлено, что 50% Bt-токсинов разлагаются через полтора дня после попадания в почву и 90% — в течение 15 дней. В случае если растительные остатки не контактировали с почвой, то 50%-й распад Cry-белков наблюдался в течение 25.6 дней, а 90% — 40.7 дней [4]. Столь сильные различия в скорости разложения Bt-токсинов, очевидно, связаны с тем, что в лабораторных условиях эксперименты проводились при постоянной комнатной температуре, в то время как в природе кроме холодного зимнего периода, характерного для средней полосы, где и произрастает в основном трансгенная кукуруза, наблюдаются и суточные колебания температур. Кроме того, в лабораторных экспериментах листья кукурузы перемалывались, просеивались и лиофилизировались, что обеспечивало существенно большую площадь для колонизации микроорганизмами. Естественно, ничего подобного в природе не происходит, и понятно, что экстраполировать результаты лабораторных опытов с Bt-токсинами на естественные условия необходимо крайне осторожно.

Читайте также  Происхождение и характер голландской живописи

Хотя поступление в почву Cry-белков с выделениями корней трансгенных растений не столь велико, как после разложения растительных остатков, оставшихся на полях после сбора урожая, но и этот фактор нельзя сбрасывать со счетов. Интересно отметить, что если корневые отростки канолы, табака и хлопка вообще не выделяют Bt-токсинов [1], то все 12 исследованных трансгенных сортов кукурузы, полученных с помощью трех независимых генно-инженерных операций (Bt11, MON810 и Bt176), продуцируют Cry-белки практически в одинаковых количествах [3]. Кроме того, инсектицидная активность выделений кукурузы была самой большой — достоверно более высокой, нежели у риса и картофеля. Хотя некоторое количество Cry-белков может попасть в почву и в результате шелушения или механического повреждения корней, но именно с их выделениями поступает в почву основная часть Bt-токсинов. В подтверждение тому достаточно сказать, что у кукурузы, риса и картофеля, выращиваемых на гидропонике, никаких нарушений корневой поверхности не отмечалось, тем не менее Cry-белки в питательном растворе все же регистрировались.

Замечено, что растения с высоким содержанием Bt-токсинов не привлекательны даже для тех фитофагов, для которых эти токсины не ядовиты. Так, в экспериментах с погребной, или шероховатой, мокрицей (Porcellio scaber), которой предлагались в пищу восемь сортов кукурузы (две трансгенных и шесть изогенных им контрольных линий), выяснилось, что это животное явно предпочитает нетрансгенные растения [5]. Кроме того известно, что растительные остатки трансгенных растений разлагаются значительно медленнее по сравнению с генетически немодифицированными изогенными линиями. Причины тому в настоящее время изучаются. Предполагается, что связано это с повышенным содержанием лигнина в трансгенных растениях. Возможно, этим же объясняется и их пищевая непривлекательность, однако, к сожалению, авторы не исследовали связь между этими сортами кукурузы и содержанием в них лигнина.

Трансгенные растения и почвенная биота

Трансгенные растения и почвенная биота

А.Г. Викторов, кандидат биологических наук, Институт проблем экологии и эволюции им. А.Н. Северцова РАН

Первые устойчивые к вредителям растения, созданные с помощью методов генной инженерии, были введены в культуру в 90-х годах прошлого столетия. Эти генетически модифицированные растения (Bt-культуры) несут гены грамположительной аэробной спорообразующей бактерии Bacillus thuringiensis, которая синтезирует параспоральные (локализованные рядом со спорой) кристаллические образования, содержащие d-эндотоксины — Cry-белки, убивающие личинок насекомых разных отрядов. Замечу, препараты из смеси клеток, спор и параспоральных кристаллов применяются уже более полувека (первый промышленный инсектицид «Спореин» был создан во Франции в 1938 г.). С тех пор они считаются одними из наиболее экологически безопасных средств защиты растений, так как этот класс пестицидов токсичен для теплокровных животных лишь в концентрациях, в несколько тысяч раз превышающих дозы, используемые при однократной обработке полей.

В настоящее время в сельском хозяйстве используется уже около тридцати Bt-культур. Самые популярные из них — кукуруза, хлопок, картофель, гибрид рапса «канола» (от англ. canada oil low acid — канадское слабокислое масло), рис, брокколи, арахис, баклажан, табак. Большинство сортов трансгенной кукурузы несут ген белка Cry1Ab, защищающий от опасного вредителя — личинок кукурузного, или стеблевого, мотылька (Ostrinia nubilalis).

В 2001 г. генетически модифицированные растения занимали уже более 12 млн га в мире, причем около половины из них приходилось на долю трансгенной кукурузы. 99% всех Bt-культур выращивают в четырех странах: США, Аргентине, Канаде и Чили [1]. В США площадь полей Bt-кукурузы в 2000 г. составляла более 8 млн га (около четверти плантаций), а Bt-хлопка — 2.4 млн га (около половины посевов). Экономическая польза таких растений очевидна: по оценке Агентства по защите окружающей среды США (U.S. Enviromental Protection Agency), использование в этой стране только Bt-зерновых культур приводит к ежегодному сокращению применения синтетических инсектицидов на площади примерно 3 млн га и позволяет сэкономить 2.7 млрд долл. США [1].

О возможном негативном влиянии трансгенных сельскохозяйственных культур на окружающую среду до недавнего времени лишь робко предупреждали экологи. Сторонники же генетической модификации растений, напротив, убеждали в их полной экологической безопасности, опираясь на результаты лабораторных тестов и опыт выращивания этих культур в естественных условиях. (Как впоследствии оказалось, применявшиеся в некоторых лабораторных экспериментах методики и объекты тестирования были не адекватны поставленным задачам, но об этом чуть позже.) Лишь сейчас, спустя десятилетие после начала промышленного выращивания трансгенных культур, становится более или менее очевидно, какого рода ущерб они могут наносить окружающей среде.

Появляется все больше свидетельств того, что использование Bt-растений может иметь долгосрочный негативный эффект, экономический ущерб которого пока даже трудно оценить. Во-первых, Bt-кукуруза производит в 1.5-2 тыс. раз больше эндотоксина, нежели вносится при однократной обработке полей химикатами, содержащими Bt-токсин. Во-вторых, культивирование Bt-кукурузы приводит к накоплению Bt-токсинов в почве в результате действия многих факторов: выделений корней, отложения пыльцы, разложения растительных остатков. В-третьих, разложение трансгенных растений происходит значительно медленнее, нежели обычных культур, а биологическая активность почв, занятых генетически модифицированными растениями, заметно ниже, чем на контрольных участках.

Bt-токсины в почве

После сбора урожая трансгенной кукурузы около десяти процентов Bt-токсинов остается на полях в растительных остатках. И только с их разложением происходит и деградация Cry-белков в естественных условиях. По данным швейцарских исследователей, концентрация токсина Cry1Ab в растительных остатках резко сокращается (до 20-38% от количества в живых растениях) через два месяца после уборки урожая и остается примерно на том же уровне в течение зимы [2]. Лишь с наступлением весны начинается дальнейшая деградация Bt-токсина, однако и по истечении 200 дней 0.3% от исходного его количества остается на полях. Максимальный же срок, в течение которого сохраняются Cry-белки, оказавшиеся в почве в результате выделений корней и разложения растительных остатков, достигает 350 дней [3]. Bt-токсины остаются биологически активными в течение столь длительного времени (фактически до года) благодаря тому, что находятся в связанном состоянии с поверхностно активными почвенными частицами (глины, гумуса и т.д.); это-то и защищает их от разложения микроорганизмами.

Эти результаты получены сравнительно недавно и принципиально отличаются от более ранних, проведенных в лабораторных условиях, когда было установлено, что 50% Bt-токсинов разлагаются через полтора дня после попадания в почву и 90% — в течение 15 дней. В случае если растительные остатки не контактировали с почвой, то 50%-й распад Cry-белков наблюдался в течение 25.6 дней, а 90% — 40.7 дней [4]. Столь сильные различия в скорости разложения Bt-токсинов, очевидно, связаны с тем, что в лабораторных условиях эксперименты проводились при постоянной комнатной температуре, в то время как в природе кроме холодного зимнего периода, характерного для средней полосы, где и произрастает в основном трансгенная кукуруза, наблюдаются и суточные колебания температур. Кроме того, в лабораторных экспериментах листья кукурузы перемалывались, просеивались и лиофилизировались, что обеспечивало существенно большую площадь для колонизации микроорганизмами. Естественно, ничего подобного в природе не происходит, и понятно, что экстраполировать результаты лабораторных опытов с Bt-токсинами на естественные условия необходимо крайне осторожно.

Хотя поступление в почву Cry-белков с выделениями корней трансгенных растений не столь велико, как после разложения растительных остатков, оставшихся на полях после сбора урожая, но и этот фактор нельзя сбрасывать со счетов. Интересно отметить, что если корневые отростки канолы, табака и хлопка вообще не выделяют Bt-токсинов [1], то все 12 исследованных трансгенных сортов кукурузы, полученных с помощью трех независимых генно-инженерных операций (Bt11, MON810 и Bt176), продуцируют Cry-белки практически в одинаковых количествах [3]. Кроме того, инсектицидная активность выделений кукурузы была самой большой — достоверно более высокой, нежели у риса и картофеля. Хотя некоторое количество Cry-белков может попасть в почву и в результате шелушения или механического повреждения корней, но именно с их выделениями поступает в почву основная часть Bt-токсинов. В подтверждение тому достаточно сказать, что у кукурузы, риса и картофеля, выращиваемых на гидропонике, никаких нарушений корневой поверхности не отмечалось, тем не менее Cry-белки в питательном растворе все же регистрировались.

Читайте также  Особенности языка рекламы

Замечено, что растения с высоким содержанием Bt-токсинов не привлекательны даже для тех фитофагов, для которых эти токсины не ядовиты. Так, в экспериментах с погребной, или шероховатой, мокрицей (Porcellio scaber), которой предлагались в пищу восемь сортов кукурузы (две трансгенных и шесть изогенных им контрольных линий), выяснилось, что это животное явно предпочитает нетрансгенные растения [5]. Кроме того известно, что растительные остатки трансгенных растений разлагаются значительно медленнее по сравнению с генетически немодифицированными изогенными линиями. Причины тому в настоящее время изучаются. Предполагается, что связано это с повышенным содержанием лигнина в трансгенных растениях. Возможно, этим же объясняется и их пищевая непривлекательность, однако, к сожалению, авторы не исследовали связь между этими сортами кукурузы и содержанием в них лигнина.

Лигнин — высокомолекулярное соединение ароматической природы — основной структурный компонент растений, заполняющий пространство между клетками и «склеивающий» их первичные оболочки. Именно лигнин обеспечивает прочность и жесткость растительных конструкций, а также их водонепроницаемость. С одной стороны, повышенное содержание лигнина затрудняет «работу» фитофагов, с другой стороны, замедляет процессы разложения растительных остатков в почве. При разложении лигнина в среду выделяются токсичные низкомолекулярные продукты распада (фенолы, метанол, карбоновые кислоты).

Содержание лигнина в стеблях Bt-сортов кукурузы на 33-97% выше, чем в изогенных им нетрансгенных линиях [6]. Большой разброс данных связан с различным содержанием лигнина в трех основных линиях трансгенной кукурузы. Избыток лигнина проявлялся и на морфологическом уровне. Сосудистые пучки и окружающие их клетки склеренхимы, в состав которых входит лигнин, были у Bt-растений почти в два раза толще, нежели у изогенных нетрансгенных линий (21.5±0.84 мм и 12.4±1.14 мм соответственно). Повышенное накопление лигнина характерно лишь для стеблей Bt-кукурузы, в листьях же его количество примерно то же, что и у обычных растений [7].

Кроме того, выяснилось еще одно любопытное обстоятельство: лигнина оказалось больше в кукурузе, выращенной в естественных условиях, чем в лабораторных. Это лишний раз подтверждает, что в искусственной среде трансгенное растение развивается иначе, чем в природе.

В результате дальнейших исследований выяснилось, что избыток лигнина характерен не только для Bt-кукурузы, это общее свойство всех трансгенных растений. В различных генетически модифицированных культурах (рисе, табаке, хлопке и картофеле) лигнина на 10-66% больше, чем в соответствующих им генетически не модифицированных изогенных линиях [8].

Севооборот и почвенная биота

Почвенная биота — комплекс разнообразных почвенных организмов, различающихся по экологическим функциям и таксономическому положению (различные группы микроорганизмов и почвенная зоофауна).

Она принимает участие в процессах формирования почвенного плодородия: в минерализации органического вещества, вовлечении химических элементов минералов литосферы в круговорот, биологической фиксации азота.

Почвенные организмы разрушают отмершие остатки растений и животных, поступающие в почву. Одна часть органического вещества минерализуется полностью, а другая — переходит в форму гумусовых веществ и живых тел почвенных организмов.

В обрабатываемой почве функции почвенных организмов сводятся к поддержанию оптимального питательного режима, что выражается в частичном закреплении минеральных удобрений с последующим освобождением по мере роста и развития растений, оструктуривании почвы, устранении неблагоприятных экологических условий в почве.

Поддержание экологически благоприятных условий в почве осуществляется благодаря наличию тесных связей между почвенными организмами, которые находятся в состоянии непрерывно изменяющегося равновесия. Одни группы микроорганизмов предъявляют простые требования к пище, другие — сложные. Между одними группами существуют симбиотические (взаимно полезные) связи, между другими — антибиотические. В последнем случае микроорганизмы выделяют в почву вещества, подавляющие развитие других микроорганизмов. Это имеет непосредственное значение в очищении почвы от фитопатогенной микрофлоры.

Для оценки деятельности почвенной биоты используют биологическую активность почвы. С одной стороны, этот показатель характеризуется численностью компонентов почвенной биоты, с другой — количественными критериями результатов жизнедеятельности почвенных организмов.

Определение численности почвенной биоты осуществляют, как правило, подсчетом общего количества почвенных организмов. Из-за несовершенства методик и малой кратности определений во времени результаты анализа дают примерную характеристику биологической активности почвы. Наряду с общим подсчетом почвенных организмов иногда определяют количество микроорганизмов разных физиологических групп (нитрифицирующие, целлюлозоразлагающие и др.).

Оценку биологической активности почвы по результатам деятельности почвенных организмов проводят методом определения количества поглощенного кислорода и продуцируемого диоксида углерода, разложении целлюлозы, активностью почвенных ферментов, количества нитратного и аммиачного азота, а также фитотоксичных соединений. Высокая биологическая активность почвы способствует росту урожайности сельскохозяйственных культур при прочих равных условиях. Для нормального функционирования почвенных организмов необходимы, прежде всего, энергия и питательные вещества. Для подавляющего большинства микроорганизмов такой источник энергии — органическое вещество почвы. Источниками поступления органического вещества в почву являются навоз, торф, солома, зеленое удобрение, сапропель, посев многолетних трав, промежуточных культур. Зеленая масса пожнивного сидерата повышает биологическую активность почвы в 1,3-1,5 раза, а в отдельные годы и в два раза. При этом изменяется видовой состав почвенной микрофлоры — повышается содержание бактерий рода Clostridium и азотофиксирующая способность почвы возрастает в 6-10 раз. Одновременно зеленое удобрение активизирует ферментативную активность почвы: активность уреазы повышалась на 52%, протеазы — на 45%, инвертазы — на 10%, каталазы — на 17% (Лошаков В. Г., 1986).

Ускоряя разложение растительных остатков — носителей почвенных фитопатогенов, зеленое удобрение в несколько раз повышает биологическую активность сапрофитной микрофлоры, которая является антагонистом почвенных грибов — возбудителей многих болезней культурных растений. Установлено, что пожнивная сидерация снижает поражение картофеля паршой обыкновенной в 2-2,4 раза, ризоктониозом — в 1,7-5,3 раза, ячменя корневыми гнилями — в 1,5-2 раза. Установлена отрицательная средне выраженная связь между степенью развития болезни корневой гнили и урожайностью зерна, которая выражается коэффициентами корреляции r = — 0,61+ 0,22 и регрессии byx = -0,70+0,26.

Наглядным показателем активизации почвенной биоты при использовании пожнивной сидерации служат результаты учета количества дождевых червей. Установлено, что длительное использование пожнивной сидерации в зерновых севооборотах на фоне минеральных удобрений способствует увеличению количества дождевых червей в пахотном слое дерново-подзолистой почвы в 1,5-2 раза.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Трансгенные растения и почвенная биота

А.Г. Викторов, кандидат биологических наук, Институт проблем экологии и эволюции им. А.Н. Северцова РАН Первые устойчивые к вредителям растения, созданные с помощью методов генной инженерии, были введены в культуру в 90-х годах прошлого столетия. Эти генетически модифицированные растения (B -культуры) несут гены грамположительной аэробной спорообразующей бактерии Bacillus huri gie sis, которая синтезирует параспоральные (локализованные рядом со спорой) кристаллические образования, содержащие d-эндотоксины — Cry-белки, убивающие личинок насекомых разных отрядов. Замечу, препараты из смеси клеток, спор и параспоральных кристаллов применяются уже более полувека (первый промышленный инсектицид «Спореин» был создан во Франции в 1938 г.). С тех пор они считаются одними из наиболее экологически безопасных средств защиты растений, так как этот класс пестицидов токсичен для теплокровных животных лишь в концентрациях, в несколько тысяч раз превышающих дозы, используемые при однократной обработке полей. В настоящее время в сельском хозяйстве используется уже около тридцати B -культур. Самые популярные из них — кукуруза, хлопок, картофель, гибрид рапса «канола» (от англ. ca ada oil low acid — канадское слабокислое масло), рис, брокколи, арахис, баклажан, табак. Большинство сортов трансгенной кукурузы несут ген белка Cry1Ab, защищающий от опасного вредителя — личинок кукурузного, или стеблевого, мотылька (Os ri ia ubilalis). В 2001 г. генетически модифицированные растения занимали уже более 12 млн га в мире, причем около половины из них приходилось на долю трансгенной кукурузы. 99% всех B -культур выращивают в четырех странах: США, Аргентине, Канаде и Чили . В США площадь полей B -кукурузы в 2000 г. составляла более 8 млн га (около четверти плантаций), а B -хлопка — 2.4 млн га (около половины посевов). Экономическая польза таких растений очевидна: по оценке Агентства по защите окружающей среды США (U.S. E virome al Pro ec io Age cy), использование в этой стране только B -зерновых культур приводит к ежегодному сокращению применения синтетических инсектицидов на площади примерно 3 млн га и позволяет сэкономить 2.7 млрд долл. США . О возможном негативном влиянии трансгенных сельскохозяйственных культур на окружающую среду до недавнего времени лишь робко предупреждали экологи. Сторонники же генетической модификации растений, напротив, убеждали в их полной экологической безопасности, опираясь на результаты лабораторных тестов и опыт выращивания этих культур в естественных условиях. (Как впоследствии оказалось, применявшиеся в некоторых лабораторных экспериментах методики и объекты тестирования были не адекватны поставленным задачам, но об этом чуть позже.) Лишь сейчас, спустя десятилетие после начала промышленного выращивания трансгенных культур, становится более или менее очевидно, какого рода ущерб они могут наносить окружающей среде. Появляется все больше свидетельств того, что использование B -растений может иметь долгосрочный негативный эффект, экономический ущерб которого пока даже трудно оценить. Во-первых, B -кукуруза производит в 1.5

Читайте также  Событийный туризм в Псковской области

-2 тыс. раз больше эндотоксина, нежели вносится при однократной обработке полей химикатами, содержащими B -токсин. Во-вторых, культивирование B -кукурузы приводит к накоплению B -токсинов в почве в результате действия многих факторов: выделений корней, отложения пыльцы, разложения растительных остатков. В-третьих, разложение трансгенных растений происходит значительно медленнее, нежели обычных культур, а биологическая активность почв, занятых генетически модифицированными растениями, заметно ниже, чем на контрольных участках. B -токсины в почве После сбора урожая трансгенной кукурузы около десяти процентов B -токсинов остается на полях в растительных остатках. И только с их разложением происходит и деградация Cry-белков в естественных условиях. По данным швейцарских исследователей, концентрация токсина Cry1Ab в растительных остатках резко сокращается (до 20-38% от количества в живых растениях) через два месяца после уборки урожая и остается примерно на том же уровне в течение зимы . Лишь с наступлением весны начинается дальнейшая деградация B -токсина, однако и по истечении 200 дней 0.3% от исходного его количества остается на полях. Максимальный же срок, в течение которого сохраняются Cry-белки, оказавшиеся в почве в результате выделений корней и разложения растительных остатков, достигает 350 дней . B -токсины остаются биологически активными в течение столь длительного времени (фактически до года) благодаря тому, что находятся в связанном состоянии с поверхностно активными почвенными частицами (глины, гумуса и т.д.); это-то и защищает их от разложения микроорганизмами. Эти результаты получены сравнительно недавно и принципиально отличаются от более ранних, проведенных в лабораторных условиях, когда было установлено, что 50% B -токсинов разлагаются через полтора дня после попадания в почву и 90% — в течение 15 дней. В случае если растительные остатки не контактировали с почвой, то 50%-й распад Cry-белков наблюдался в течение 25.6 дней, а 90% — 40.7 дней . Столь сильные различия в скорости разложения B -токсинов, очевидно, связаны с тем, что в лабораторных условиях эксперименты проводились при постоянной комнатной температуре, в то время как в природе кроме холодного зимнего периода, характерного для средней полосы, где и произрастает в основном трансгенная кукуруза, наблюдаются и суточные колебания температур. Кроме того, в лабораторных экспериментах листья кукурузы перемалывались, просеивались и лиофилизировались, что обеспечивало существенно большую площадь для колонизации микроорганизмами. Естественно, ничего подобного в природе не происходит, и понятно, что экстраполировать результаты лабораторных опытов с B -токсинами на естественные условия необходимо крайне осторожно. Хотя поступление в почву Cry-белков с выделениями корней трансгенных растений не столь велико, как после разложения растительных остатков, оставшихся на полях после сбора урожая, но и этот фактор нельзя сбрасывать со счетов. Интересно отметить, что если корневые отростки канолы, табака и хлопка вообще не выделяют B -токсинов , то все 12 исследованных трансгенных сортов кукурузы, полученных с помощью трех независимых генно-инженерных операций (B 11, MO 810 и B 176), продуцируют Cry-белки практически в одинаковых количествах .

Кроме того, инсектицидная активность выделений кукурузы была самой большой — достоверно более высокой, нежели у риса и картофеля. Хотя некоторое количество Cry-белков может попасть в почву и в результате шелушения или механического повреждения корней, но именно с их выделениями поступает в почву основная часть B -токсинов. В подтверждение тому достаточно сказать, что у кукурузы, риса и картофеля, выращиваемых на гидропонике, никаких нарушений корневой поверхности не отмечалось, тем не менее Cry-белки в питательном растворе все же регистрировались. Лигнин Замечено, что растения с высоким содержанием B -токсинов не привлекательны даже для тех фитофагов, для которых эти токсины не ядовиты. Так, в экспериментах с погребной, или шероховатой, мокрицей (Porcellio scaber), которой предлагались в пищу восемь сортов кукурузы (две трансгенных и шесть изогенных им контрольных линий), выяснилось, что это животное явно предпочитает нетрансгенные растения . Кроме того известно, что растительные остатки трансгенных растений разлагаются значительно медленнее по сравнению с генетически немодифицированными изогенными линиями. Причины тому в настоящее время изучаются. Предполагается, что связано это с повышенным содержанием лигнина в трансгенных растениях. Возможно, этим же объясняется и их пищевая непривлекательность, однако, к сожалению, авторы не исследовали связь между этими сортами кукурузы и содержанием в них лигнина. Лигнин — высокомолекулярное соединение ароматической природы — основной структурный компонент растений, заполняющий пространство между клетками и «склеивающий» их первичные оболочки. Именно лигнин обеспечивает прочность и жесткость растительных конструкций, а также их водонепроницаемость. С одной стороны, повышенное содержание лигнина затрудняет «работу» фитофагов, с другой стороны, замедляет процессы разложения растительных остатков в почве. При разложении лигнина в среду выделяются токсичные низкомолекулярные продукты распада (фенолы, метанол, карбоновые кислоты). Содержание лигнина в стеблях B -сортов кукурузы на 33-97% выше, чем в изогенных им нетрансгенных линиях . Большой разброс данных связан с различным содержанием лигнина в трех основных линиях трансгенной кукурузы. Избыток лигнина проявлялся и на морфологическом уровне. Сосудистые пучки и окружающие их клетки склеренхимы, в состав которых входит лигнин, были у B -растений почти в два раза толще, нежели у изогенных нетрансгенных линий (21.5±0.84 мм и 12.4±1.14 мм соответственно). Повышенное накопление лигнина характерно лишь для стеблей B -кукурузы, в листьях же его количество примерно то же, что и у обычных растений . Кроме того, выяснилось еще одно любопытное обстоятельство: лигнина оказалось больше в кукурузе, выращенной в естественных условиях, чем в лабораторных. Это лишний раз подтверждает, что в искусственной среде трансгенное растение развивается иначе, чем в природе. В результате дальнейших исследований выяснилось, что избыток лигнина характерен не только для B -кукурузы, это общее свойство всех трансгенных растений. В различных генетически модифицированных культурах (рисе, табаке, хлопке и картофеле) лигнина на 10-66% больше, чем в соответствующих им генетически не модифицированных изогенных линиях .

Говоря иными словами, почти вся военная техника, используемая сейчас, включая ракеты, танки и самолеты, включая компьютеры и спутниковые системы слежения, станет естественным продолжением боевых качеств такого солдата. Самое важное здесь, что «человек новый» будет жить в совершенно ином восприятии времени упреждая и опережая противника сразу во всем оперативном пространстве, он будет видеть сразу весь информационный пейзаж увязывая свои действия с динамикой меняющейся ситуации. Причем, заметим, это будет не экстремальным выражением его физической подготовки, не химической стимуляцией как у нынешних элитных частей, способных лишь на короткое «сверхчеловеческое» усилие, а вполне обыденным превосходством абсолютно иного способа биологического существования. Фактически, такие люди уже не будут людьми. Фактически, они станут люденами17 новыми разумными существами, появившимися на Земле. Возможность технологического «усовершенствования» homo sapiens сейчас трудно оспаривать. Трансгенные растения и животные существуют в нашем мире уже довольно давно

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: