Углеродные нанотрубки 3 - ABCD42.RU

Углеродные нанотрубки 3

Что такое углеродные нанотрубки?

Углеродные нанотрубки представляют собой цилиндрические молекулы, изготовленные из свернутых листов графена. Это самые жесткие и прочные материалы, которые были синтезированы. Они имеют уникальные электрические и тепловые свойства. Эти нанотрубки могут иметь множество применений, от электроники до материаловедения.

С момента открытия углеродных нанотрубок в 1991 году появился новый ученик в области материаловедения — нанонаука. Многие университеты и организации по всему миру вложили миллионы долларов, чтобы раскрыть тайны этих материалов.

Углеродные нанотрубки — интригующий аллотроп углерода. У них есть множество уникальных, никогда не встречавшихся ранее свойств. Например, они могут быть плотными и сильными, будучи тоньше человеческого волоса.

Углеродная нанотрубка представляет собой чрезвычайно маленькую цилиндрическую структуру, изготовленную из графена. Графен представляет собой один слой атомов углерода, плотно связанных в двумерной гексагональной решетке.

Они могут быть изготовлены различной длины в соответствии с требованиями. Эти конструкции невероятно легкие, стабильные и обладают потенциалом для разработки удивительных материалов будущего. На самом деле, они считаются лучшим кандидатом на материал для строительства космического лифта.

Ниже мы подробно остановились на процессе производства, свойствах и применениях углеродных нанотрубок. Это просто краткий обзор того, что мы знаем об этих удивительных молекулах.

Два основных типа углеродных нанотрубок

Углеродные нанотрубки могут быть классифицированы на основе их структуры —

Одностенная зигзагообразная углеродная нанотрубка

1) Одностенные нанотрубки (ОСНТ): имеют диаметры в диапазоне один нанометр. Они являются одним из углеродных аллотропов, промежуточных между плоскими графеновыми и фуллереновыми клетками.

2) Многостенные нанотрубки (MWNT): состоит из нескольких концентрически связанных углеродных нанотрубок. Они могут быть длиной в несколько микрометров (или даже миллиметров) с диаметром более 100 нанометров.

Обе структуры имеют различные характеристики, которые делают эти нанотрубки подходящими для различных применений.

Кто открыл углеродные нанотрубки?

Это довольно спорный вопрос, потому что многие ученые сообщают о существовании углеродных нанотрубок. В документе, опубликованном в 2006 году, описывалось увлекательное и часто искаженное происхождение углеродной нанотрубки.

Хотя история углеродных нанотрубок восходит к началу 1950-х годов (когда два российских ученых опубликовали четкие изображения углеродных трубок с 50 нанометрами), большая часть научной и популярной литературы посвящена японскому физику Сумио Иидзиме за открытие полого нанометрового размера трубы, состоящие из графитового углерода.

В 1991 году он написал статью, описывающую многостенные углеродные нанотрубки, что послужило основанием для интенсивных исследований углеродных наноструктур.

Как они сделаны?

Углеродные нанотрубки могут быть изготовлены несколькими способами. Тремя наиболее распространенными процедурами являются разряд, лазерная абляция и химическое осаждение из паровой фазы.

Дуговой разряд — это традиционная технология, в которой углеродные нанотрубки получают дуговым испарением двух углеродных стержней, расположенных вплотную. Эти нанотрубки затем изолируются от пара и сажи.

При лазерной абляции для испарения графита используются инертный газ и пульсирующий лазер (при высоких температурах). Углеродные нанотрубки затем извлекаются из паров, которые обычно требуют дальнейшей очистки.

Процесс химического осаждения из паровой фазы дает возможность массового производства нанотрубок в более легко контролируемых условиях и при меньших затратах. Таким образом, в настоящее время это самый популярный метод синтеза углеродных нанотрубок.

В этом процессе производители объединяют углеродсодержащие реакционные газы (такие, как окись углерода или водород) с металлическими катализаторами (такими как железо), чтобы получить нанотрубки на катализаторе внутри высокотемпературной печи.

Процесс может быть либо плазменным, либо чисто каталитическим. Последнее требует более высоких температур (до 750 ° C), чем процесс с плазменной поддержкой (200-500 ° C).

Во всех этих трех методах конечные продукты должны быть дополнительно очищены с использованием различных методов, таких как обработка ультразвуком или кислотой.

Свойства углеродных нанотрубок

Механический — с точки зрения модуля упругости и прочности на разрыв, углеродные нанотрубки являются самыми жесткими и прочными материалами, которые синтезируются. Этот вид силы происходит от чрезвычайно сильной формы молекулярного взаимодействия между отдельными атомами углерода — ковалентными связями sp 2 .

Сравнение механических свойств разных материалов

Нанотрубки удерживаются вместе сравнительно слабыми ван-дер-ваальсовыми силами. Обычно углеродные нанотрубки намного длиннее своего диаметра. В 2013 году исследовательская группа создала углеродные нанотрубки длиной 0,5 метра с отношением диаметра к длине 1: 132 000,00.

Исследование , проведенное в 2008 году, показало, что отдельные нанотрубки могут иметь прочность до 100 гигапаскалей. Стандартные одностенные нанотрубки, однако, могут выдерживать давление до 25 гПа без постоянной деформации.

Электроуглеродные нанотрубки обладают исключительной электропроводностью. Они либо металлические, либо полупроводниковые, и эти свойства не зависят от того, свернута ли трубка ниже или выше плоскости графена. Электрические свойства остаются неизменными для нанотрубки и ее зеркального отражения.

Теоретически, металлические нанотрубки могут нести в 1000 раз больше плотности электрического тока, чем металлы, такие как медь.

Оптико-углеродные нанотрубки обладают полезными свойствами фотолюминесценции, оптического поглощения и спектроскопии комбинационного рассеяния света.

Они обеспечивают надежную и быструю характеристику «качества нанотрубок» с точки зрения структурных дефектов и нетрубого содержания углерода. Эти характеристики определяют практически все важные свойства, включая электрические, механические и оптические свойства.

Хотя электрохимические, электрические и механические свойства нанотрубок хорошо изучены и имеют практическое применение в различных областях, применение оптических свойств до сих пор неясно. До настоящего времени светодиоды, оптоэлектронные запоминающие устройства, болометры были реализованы с использованием одностенных углеродных нанотрубок.

Термические — углеродные нанотрубки обладают уникальными термическими свойствами, которые делают их особенными для разработки новых материалов. На самом деле их теплопроводность намного лучше, чем у алмазов.

Теплопроводность при комнатной температуре одностенной нанотрубки вдоль ее оси составляет 3500 Вт · м -1 · К -1. Температурная стабильность этих нанотрубок составляет около 750 °С на воздухе и до 2800 °С в вакууме.

Применение

За последние два десятилетия цены на углеродные нанотрубки снизились с 1500 долларов за грамм до 2 долларов за грамм. Это открыло широкий спектр применений, особенно в области материаловедения и электроники.

В настоящее время используются плоские дисплеи, сенсорные устройства, сканирующие зондовые микроскопы, ветряные турбины, морские краски, велосипедные компоненты и спортивное оборудование, такое как хоккейные клюшки, лыжи и бейсбольные биты.

Гибкий водородный датчик из одностенных нанотрубок / Фото: DR. Sun / Argonne

Объемные углеродные нанотрубки были использованы для создания вантаблака (одного из самых темных известных материалов, который поглощает до 99,96% видимого света). В тканевой инженерии они могут использоваться в качестве строительных лесов для роста костей.

В будущем эти нанотрубки могут использоваться для различных целей: их можно использовать для лечения рака, мониторинга окружающей среды, накопления энергии, плоских дисплеев, конструкций самолетов, радаров и космических аппаратов.

Риски для здоровья углеродных нанотрубок

Углеродные нанотрубки-это недавно открытый материал с многолетней историей. Нам еще многое предстоит раскрыть. Хотя из-за этого материала не произошло никаких серьезных несчастных случаев, некоторые результаты показывают, что нанотрубки могут представлять опасность для здоровья, аналогичную асбесту.

Потенциальные риски для здоровья не являются причиной для тревоги, но компании, работающие с углеродными нанотрубками, должны принять некоторые меры предосторожности, чтобы избежать воздействия.

В 2013 году Национальный институт безопасности и гигиены труда опубликовал отчет с подробным описанием рисков и рекомендованных пределов воздействия для углеродных нановолокон и нанотрубок.

В 2016 году Европейский Союз установил правила коммерциализации одностенных углеродных нанотрубок (до 10 метрических тонн).

Последние исследования

Много исследований было проведено в той же области, особенно в последние пару лет.

Например, в 2019 году ученые открыли новый способ физического измерения углеродных нанотрубок. Другая группа исследователей продемонстрировала 16-разрядный микропроцессор, состоящий из 14 000 углеродных нанотрубок.

В 2018 году исследователи создали большое количество нетронутых одностенных нанотрубок в оттенках радуги. Это может найти применение в средствах для нанесения покрытий для новых типов солнечных элементов или технологий с сенсорным экраном.

В 2017 году ученые обнаружили, что усовершенствованные одностенные углеродные нанотрубки могут предложить более эффективный и устойчивый способ очистки и очистки воды, чем традиционные промышленные материалы, такие как силиконовые гели.

Углеродные нанотрубки, их производство, свойства и применение

Углеродные нанотрубки, их производство, свойства и применение.

Углеродные нанотрубки – это углеродная модификация углерода, представляющая собой полые цилиндрические структуры диаметром от десятых до нескольких десятков нанометров и длиной от одного микрометра до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей.

Описание углеродных нанотрубок:

Углеродные нанотрубки – это углеродная модификация углерода, представляющая собой полые цилиндрические структуры диаметром от десятых до нескольких десятков нанометров и длиной от одного микрометра до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей.

Углеродные нанотрубки являются одной из аллотропных форм углерода наряду с алмазом , графитом, графеном , фуллереном , карбином и пр.

Если смотреть на углеродную нанотрубку в микроскоп с увеличением в миллион раз, то можно наблюдать полый цилиндр, поверхность которого формируется множеством шестиугольных многоугольников. На самой вершине равностороннего многоугольника располагается атом углерода. Углеродная нанотрубка визуально напоминает лист бумаги свернутый в трубку, только вместо бумажной поверхности следует рассматривать графитовую (точнее – графеновую) плоскость. В научной среде цилиндрическую плоскость трубки принято называть графеновой. Толщина графеновой плоскости не превышает один атом углерода .

Длина углеродной нанотрубки может достигать до нескольких сантиметров. Некоторым ученым удалось синтезировать углеродные нанотрубки длиной 20 см. Для получения более длинных структур их можно сплести в нити неограниченной длины.

Физические свойства нанотрубок пребывают в прямой зависимости от хиральности (особенность мельчайших частиц вещества не накладываться полностью на свое зеркальное отображение). Степень хиральности определяется зависимостью, существующей между специальными индексами хиральности (n, m) и неким углом сворачивания трубки (α).

Индексы хиральности (n, m) при этом являются координатами радиус-вектора R в заданной на графеновой плоскости косоугольной системе координат, определяющего ориентацию оси трубки относительно графеновой плоскости и ее диаметр. Индексы (n, m) указывают местонахождение того шестиугольника сетки, который в результате свертывания трубки должен совпасть с шестиугольником в начале координат.

Читайте также  Экологические проблемы Южного Урала

Виды и классификация углеродных нанотрубок:

В зависимости от индексов хиральности различают: прямые, зубчатые, зигзагообразные и спиральные углеродные нанотрубки.

По количеству графеновых слоев углеродные нанотрубки делятся на однослойные ( одностенные ) и многослойные (многостенные).

Наиболее простой вид нанотрубок содержит один слой. Диаметр однослойных нанотрубок может составлять один нанометр, длина – превышать предыдущий вариант в тысячи раз. Однослойную нанотрубку нередко отождествляют с «выкройкой» графена, имеющей сеточную структуру и состоящую из бесчисленного множества правильных многоугольников.

Многослойные нанотрубки содержат несколько слоев графена. Они характеризуются широким разнообразием форм и конфигураций. Причем разнообразие структур проявляется как в продольном, так и в поперечном направлении. Здесь выделяются следующие типы:

– нанотрубки в виде совокупности коаксиально вложенных друг в друга цилиндрических трубок, т.н. тип «русская матрёшка» (russian dolls),

– нанотрубки в виде совокупности вложенных друг в друга коаксиальных (шестигранных) призм,

– нанотрубки в виде свитка (scroll).

Расстояние между соседними графеновыми слоями составляет 0,34 нм, как в обычном графите.

По типу торцов углеродные нанотрубки бывают:

– закрытые (заканчивающиеся полусферой, которая может рассматриваться как половина молекулы фуллерена).

По электронным свойствам углеродные нанотрубки делятся на:

– металлические. Разность индексов хиральности (n – m) делится на 3 либо индексы равны между собой,

– полупроводниковые. Прочие значения индексов хиральности (n и m).

Тип проводимости нанотрубок зависит от их хиральности, т.е. от группы симметрии, к которым принадлежит конкретная нанотрубка, причем он подчиняется простому правилу: если индексы нанотрубки равны между собой или же их разность делится на три, нанотрубка является полуметаллом, в любом другом случае они проявляют полупроводниковые свойства.

Свойства и преимущества углеродных нанотрубок:

– обладают адсорбционными свойствами. Могут хранить в себе различные газы, например, водород . Попав внутрь атомы и молекулы уже не могут выйти наружу, т.к. концы трубки запаиваются, а пройти через графеновые плоскости цилиндра они не могут, т.к. углеродные решетки слишком узки для большинства атомов,

– обладают капиллярным эффектом. Углеродные нанотрубки открытым концом втягивают в себя жидкие вещества и расплавленные металлы,

– улучшение эксплуатационных характеристик других материалов при добавлении в их структуру,

– высокая прочность. Углеродные нанотрубки прочнее лучших марок стали в 50-100 раз,

– имеют в шесть раз меньшую плотность, чем обыкновенная сталь. Это означает, что материалы на основе углеродных нанотрубок при одинаковом объеме будут в десятки раз прочнее. Нанокабель длиной от Земли до Луны, состоящий из одной углеродной нанотрубки, можно намотать на катушку размером с маковое зернышко,

– модуль Юнга у углеродных нанотрубок вдвое выше, чем у обычных углеродных волокон ,

– небольшая нить из углеродных нанотрубок диаметром 1 мм выдерживает груз весом 20 тонн, что в сотни миллиардов раз больше ее собственной массы,

– рекордно высокая удельная поверхность – до 2 600 м 2 /г,

– высокая гибкость. Их можно растягивать, сжимать, скручивать и пр., не опасаясь при этом повредить их каким-либо образом. Они напоминают жесткие резиновые трубки, которые не рвутся и не ломаются при различных механических нагрузках. Однако под действием механических напряжений, превышающих критические, нанотрубки не только не рвутся и не ломаются, а просто перестраиваются, сохраняя при этом высокую прочность, гибкость, прочие механические и электрические свойства,

– высокая устойчивость к изнашиваемости. Многоразовая деформация (тысячи и десятки тысяч циклов скручивания/раскручивания, сжатия/растяжения в минуту) нанотрубок никаким образом не влияет на их прочность, на их электро- и теплопроводность. Какие-либо признаки деформации либо износа при этом отсутствуют,

– повышенная электро- и теплопроводность. Проводимость меди, как лучшего металлического проводника таблицы Д.И. Менделеева , в 1000 раз хуже, чем у углеродных нанотрубок. При этом, электропроводность трубок зависит от индекса хиральности. В одних случаях нанотрубки могут быть полупроводниками, в других проявлять свойства практически идеальных проводников. В последнем случае через нанотрубки можно пропускать электрический ток величиной 10 7 А/см 2 и при этом они не будут выделять тепло (в то время как обычный проводник из меди сразу бы испарился),

– взаимная связь между электрическими и механическими свойствами,

– токсичность и канцерогенность, аналогичная асбестовым волокнам. Вместе с тем токчичность и канцерогенность нанотрубок (как и волокон асбеста) весьма различна и зависит от диаметра и типа волокон. На сегодняшний день продолжаются исследования по вопросу биологической совместимости нанотрубок с живыми организмами. Во всяком случае при работе с нанотрубками следует соблюдать меры безопасности, и в первую очередь обеспечить защиты органов дыхания и органов пищеварения,

– проявляют мемристорный эффект,

– занимают промежуточное положение между кристаллами и отдельными атомами. Поэтому применение углеродных нанотрубок будет способствовать миниатюризации устройств,

– с помощью углеродных нанотрубок можно создавать полупроводниковые гетероструктуры, т.е. структуры типа «металл/полупроводник» или стык двух разных полупроводников,

– обладая повышенной теплопроводностью, эффективно рассеивают тепло,

– ловят радиоволны частотой от 40 до 400 МГц (обычные АМ и FМ волны), а затем усиливают и передают их,

Углеродные нанотрубки. Устройство и применение. Особенности

Углеродные нанотрубки – это материал, которым грезят многие ученые. Высокий коэффициент прочности, превосходная тепло- и электропроводность, огнестойкость и весовой коэффициент на порядок выше, чем у большинства известных материалов. Углеродные нанотрубки представляют свернутый в трубку лист графена. Русские ученые Константин Новоселов, а также Андрей Гейм за его открытие получили Нобелевскую премию в 2010 году.

Впервые же наблюдать за углеродными трубками на поверхности железного катализатора могли советские ученые еще в 1952 году. Однако потребовалось пятьдесят лет, чтобы ученые смогли увидеть в нанотрубках перспективный и полезный материал. Одним из поразительных свойств этих нанотрубок является то, что их свойства определяются геометрией. Так от угла скручивания зависят их электрические свойства — нанотрубки могут демонстрировать полупроводниковую и металлическую проводимость.

Многие перспективные направления в нанотехнологиях сегодня связывают именно с углеродными нанотрубками. Если просто, то углеродные нанотрубки представляют гигантские молекулы или каркасные структуры, которые состоят лишь из атомов углерода. Легко представить такую нанотрубку, если вообразить, что происходит сворачивание в трубку графена – это один из молекулярных слоев графита. Метод сворачивания нанотрубок во многом определяет конечные свойства данного материала.

Естественно, что никто не создает нанотрубки, специально сворачивая их из листа графита. Образуются нанотрубки сами, к примеру, на поверхности угольных электродов либо между ними при дуговом разряде. Атомы углерода при разряде испаряются с поверхности и соединяются между собой. В результате образуются нанотрубки различного вида – многослойные, однослойные и с различными углами закручивания.

Основная классификация нанотрубок как раз идет по числу составляющих их слоев:

  • однослойные нанотрубки – самый простой вид нанотрубок. Большая их часть из них имеют диаметр порядка 1 нм при длине, которая может получиться в тысячи раз больше;
  • многослойные нанотрубки, состоящих из нескольких слоев графена, они складываются в форме трубки. Между слоями образуется расстояние 0,34 нм, то есть идентичное расстоянию между слоями в кристалле графита.
Устройство

Нанотрубки представляют протяженные цилиндрические структуры углерода, которые могут иметь длину до нескольких сантиметров и диаметр от одного до нескольких десятков нанометров. В то же время сегодня имеются технологии, которые позволяют сплетать их в нити неограниченной длины. Они могут состоять из одной или нескольких графеновых плоскостей, свернутых в трубку, которые обычно заканчиваются полусферической головкой.

Диаметр нанотрубок составляет несколько нанометров, то есть несколько миллиардных долей метра. Стенки углеродных нанотрубок выполнены из шестиугольников, в вершинах которых находятся атомы углерода. Трубки могут иметь разный тип строения, именно он влияет на их механические, электронные и химические свойства. Однослойные трубки имеют меньше дефектов, в то же время после отжига при высокой температуре в инертной атмосфере удается получить и бездефектные варианты трубок. Многослойные нанотрубки отличаются от стандартных однослойных существенно более широким разнообразием конфигураций и форм.

Синтезировать углеродные нанотрубки можно разными способами, но наиболее распространенными являются:
  • Дуговой разряд . Метод обеспечивает получение нанотрубок на технологических установках для выработки фуллеренов в плазме дугового разряда, который горит в атмосфере гелия. Но здесь применяются иные режимы горения дуги: более высокое давление гелия и низкие плотности тока, а также катоды большего диаметра. В катодном осадке находятся нанотрубки длиной до 40 мкм, они растут перпендикулярно от катода и объединяются в цилиндрические пучки.
  • Метод лазерной абляции . Метод базируется на испарении мишени из графита в специальном высокотемпературном реакторе. Нанотрубки образуются на охлажденной поверхности реактора в виде конденсата испарения графита. Данный метод позволяет преимущественно получать однослойные нанотрубки с контролем необходимого диаметра посредством температуры. Но указанный метод существенно дороже других.
  • Химическое осаждение из газовой фазы . Данный метод предполагает подготовку подложки со слоем катализатора – это могут быть частицы железа, кобальта, никеля или их комбинаций. Диаметр нанотрубок, выращенных указанным способом, будет зависеть от размера используемых частиц. Подложка нагревается до 700 градусов. Для инициации роста нанотрубок вводятся в реактор углеродосодержащий газ и технологический газ (водород, азот или аммиак). Нанотрубки растут на участках катализаторов из металла.
Применения и особенности
  • Применения в фотонике и оптике . Подбирая диаметр нанотрубок можно обеспечить оптическое поглощение в большом спектральном диапазоне. Однослойные углеродные нанотрубки проявляют сильную нелинейность насыщающегося поглощения, то есть при достаточно интенсивном свете они становятся прозрачными. Поэтому они могут применяться для разных приложений в области фотоники, к примеру, в маршрутизаторах и коммутаторах, для создания ультракоротких лазерных импульсов и регенерации оптических сигналов.
  • Применение в электронике . На данный момент заявлено множество способов использования нанотрубок в электронике, однако реализовать удается лишь небольшую ее часть. Наибольший интерес вызывает применение нанотрубок в прозрачных проводниках в качестве термоустойчивого межфазного материала.
Читайте также  Профессиональные вредности в системе здравоохранения

Актуальность попыток внедрения нанотрубок в электронике вызвано необходимостью замены индия в теплоотводах, которые применяются в транзисторах большой мощности, графических процессорах и центральных процессорах, ведь запасы этого материала уменьшаются, а цена на него растет.

  • Создание сенсоров . Углеродные нанотрубки для сенсоров – одно из наиболее интересных решений. Ультратонкие пленки из одностенных нанотрубок на данный момент могут стать наиболее лучшей основой для электронных сенсоров. Производить их можно с применением разных методов.
  • Создание биочипов, биосенсоров , контроля адресной доставки и действия лекарств в биотехнологической отрасли. Работы в данном направлении сегодня вовсю ведутся. Высокопроизводительный анализ, выполняемый с использованием нанотехнологий, позволит существенно уменьшить время, которое нужно для вывода технологии на рынок.
  • Сегодня резко растет производство нанокомпозитов , в основном полимерных. При введении в них даже небольшого количества углеродных нанотрубок обеспечивается существенное изменение свойств полимеров. Так у них повышается термическая и химическая устойчивость, теплопроводность, электропроводность, улучшаются механические характеристики. Усовершенствованы десятки материалов при помощи добавления в них углеродных нанотрубок;

— композитные волокна на основе полимеров с нанотрубками;
— керамические композиты с добавками. Увеличивается трещиностойкость керамики, появляется защита электромагнитного излучения, увеличивается электро- и теплопроводность;
— бетон с нанотрубками – повышается марка, прочность, трещиностойкость, уменьшается усадка;
— металлические композиты. Особенно медные композиты, у которых механические свойства в несколько раз выше, чем у обычной меди;
— гибридные композиты, в которых содержатся сразу три компонента: неорганические или полимерные волокна (ткани), связующее вещество и нанотрубки.

Достоинства и недостатки

Среди достоинств углеродных нанотрубок можно отметить:
  • Множество уникальных и по-настоящему полезных свойств, которые можно применять в области внедрения энергоэффективных решений, фотоники, электроники, и иных приложений.
  • Это наноматериал, который обладает высоким коэффициентом прочности, превосходной тепло- и электропроводностью, огнестойкостью.
  • Улучшение свойств других материалов при внедрении в них небольшого количества углеродных нанотрубок.
  • Углеродные нанотрубки с открытым концом проявляют капиллярный эффект, то есть они могут втягивать в себя расплавленные металлы и иные жидкие вещества;
  • Нанотрубки сочетают в себе свойства твердого тела и молекул, что открывает значительные перспективы.
Среди недостатков углеродных нанотрубок можно отметить:
  • Углеродные нанотрубки на данный момент не производятся в промышленных масштабах, поэтому их серийное применение ограничено.
  • Стоимость производства углеродных нанотрубок высока, что также ограничивает их применение. Тем не менее, ученные усиленно работают над снижением себестоимости их производства.
  • Необходимость совершенствования технологий производства для создания углеродных нанотрубок с точно заданными свойствами.
Перспективы
В ближайшем будущем углеродные нанотрубки будут применяться повсеместно, из них будут создаваться:
  • Нановесы, композитные материалы, сверхпрочные нити.
  • Топливные элементы, прозрачные проводящие поверхности, нанопровода, транзисторы.
  • Новейшие нейрокомпьютерные разработки.
  • Дисплеи, светодиоды.
  • Устройства для хранения металлов и газов, капсулы для активных молекул, нанопипетки.
  • Медицинские нанороботы для доставки лекарств и проведения операций.
  • Миниатюрные датчики с ультравысокой чувствительностью. Такие нанодатчики могут найти применение в биотехнологических, медицинских и военных применениях.
  • Трос для космического лифта.
  • Плоские прозрачные громкоговорители.
  • Искусственные мышцы. В будущем появятся киборги, роботы, инвалиды будут возвращаться к полноценной жизни.
  • Двигатели и генераторы энергии.
  • Умная, легкая и комфортная одежда, которая будет защищать от любых невзгод.
  • Безопасные суперконденсаторы с быстрой зарядкой.

Все это в будущем, ведь промышленные технологии создания и использования углеродных нанотрубок находятся на начальном этапе развития, а цена их крайне дорога. Но российские ученые уже заявили, что они нашли способ снизить стоимость создания этого материала в двести раз. Эта уникальная технология производства углеродных нанотрубок на данный момент держится в секрете, но она должна произвести революцию в промышленности и во многих иных областях.

Углеродные нанотрубки 3

УГЛЕРОДНЫЕ НАНОТРУБКИ: ИХ СВОЙСТВА И ПРИМЕНЕНИЕ

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Автор работы награжден дипломом победителя III степени

В настоящее время на основе углеродных наноструктур создается элементная база наноэлектроники и наносистемной техники, появляются новые материалы и устройства. Уникальные физико-механические и электрические свойства делают возможным использование углеродных нанотрубок в качестве зондов сканирующей зондовой микроскопии, чувствительных элементов датчиков, проводящих каналов транзисторов, а так же в качестве наполнителей композитных материалов. Создание углеродных нанотрубок с требуемыми параметрами в заданном месте, на подложке, является актуальной задачей.

Целью моей работы является изучение истории создания, строения, свойств , а также варианты применения и использования углеродных нанотрубок, моделирование макета каркасной структуры углеродной нанотрубки и исследование возможностей их производства.

План работы включает историческую справку, теорию вопроса и практическую часть.

В проекте использованы такие методы работы, как моделирование, изучение и анализ специальной литературы и научно-популярной информации с сайтов.

2. Углеродные нанотрубки: их свойства и применение

Наноматериалы и наноявления люди использовали в своей деятельности веками, даже не подозревая об этом. Уже в древности мастера подкрашивали стекло для витражей с помощью коллоидного золота (кстати, такая техника использована и при изготовлении красного стекла для кремлевских звезд) (рис.1). А ведь коллоидное золото-не что иное, как взвесь наночастиц золота. Другой пример — дамасская сталь, известная с IV века нашей эры (рис.2). Недавно выяснилось, что она содержит комплексы из углеродных нанотрубок- поэтому-то знаменитые дамасские клинки так прочны.

В 1931 году был создан электронные микроскоп, и люди впервые смогли увидеть нанообъекты — в том числе вирусы. 1952 году советскими учеными Л.В. Радушкевичем (рис.3) и В.М. Лукьяновичем (рис.4) был обнаружен первый наноматериал. Это были широко известные теперь углеродные нанотрубки — они возникали в саже углеродных электродуговых свечей. Диаметр «одномерных наноскопических объектов», как их назвали первооткрыватели, составил около 100 нм. Однако в то время это открытие осталось незамеченным. Всемирная слава нанотрубок началась в 1991 году, после публикации статьи японского исследователя Сумио Иидзимы.

Нанотрубки включают в семейство фуллеренов – материалов из одноатомных слоев углерода. Впервые молекулы фуллеренов — похожие на футбольный мяч многогранники из 60,70 или более атомов,- были получены одним из пионеров нанотехнологий Ричардом Смолли с коллегами в 1980-х годах. Название эти материалы получили в честь инженера и философа Бакминстрера Фуллера, который использовал многогранники такой же структуры в строительных конструкциях. Открытый совсем недавно графен — «ковер» из шестиугольных ячеек атомов углерода — материал из того же семейства.

2.2. Теория вопроса

Многие из перспективных направлений в материаловедении, нанотехнологии, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры. Что же это такое?

Углеродные каркасные структуры — это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры — это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул — это их каркасная форма: они выглядят как замкнутые, пустые внутри «оболочки». Самая знаменитая из углеродных каркасных структур — это фуллерен C60(рис.5).

Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 году, опять-таки совершенно неожиданно, были обнаружены длинные, цилиндрические углеродные образования, получившие названия нанотрубок. Визуально структуру таких нанотрубок можно представить себе так: берем графитовую плоскость, вырезаем из нее полоску и «склеиваем» ее в цилиндр (предостережение: такое сворачивание графитовой плоскости — это лишь способ представить себе структуру нанотрубки; реально нанотрубки растут совсем по-другому). Казалось бы, что проще — берешь графитовую плоскость и сворачиваешь в цилиндр! — однако до экспериментального открытия нанотрубок никто из теоретиков их не предсказывал! Так что ученым оставалось только изучать их — и удивляться!

А удивительного было много.

Во-первых, разнообразие форм: нанотрубки могли быть большие и маленькие, однослойные и многослойные, прямые и спиральные(рис.6).

Во-вторых, несмотря на кажущуюся хрупкость и даже ажурность, нанотрубки оказались на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки также ведут себя экстравагантно: они не «рвутся» и не «ломаются», а просто-напросто перестраиваются!

Далее, нанотрубки демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Например, в зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут быть и проводниками, и полупроводниками! Может ли какой-либо иной материал с таким простым химическим составом похвастаться хотя бы частью тех свойств, которыми обладают нанотрубки?!

Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов — что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается — сейчас ученые уже вплотную подошли к миллиметровому рубежу. Поэтому есть все основания надеяться, что в скором будущем ученые научатся выращивать нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь «трос» толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений.

В нанотрубки можно не только «загонять» атомы и молекулы поодиночке, но и буквально «вливать» вещество. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами, то есть она как бы втягивает в себя вещество. Капиллярные явления, поверхностные явления на границе жидкости с другой средой, связанные с искривлением ее поверхности. Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму шара. Поскольку шар обладает минимальной поверхностью при данном объеме, такая форма отвечает минимуму поверхностной энергии жидкости, т.е. ее устойчивому равновесному состоянию. В случае достаточно больших масс жидкости действие поверхностного натяжения компенсируется силой тяжести, поэтому маловязкая жидкость быстро принимает форму сосуда, в который она налита, а ее свободная поверхность представляется практически плоской.

Читайте также  Сравнение восточных и западных типов цивилизаций

Таким образом, нанотрубки можно использовать как микроскопические контейнеры для перевозки химически или биологически активных веществ: белков, ядовитых газов, компонентов топлива и даже расплавленных металлов. Попав внутрь нанотрубки, атомы или молекулы уже не могут выйти наружу: концы нанотрубок надежно «запаяны», а углеродное ароматическое кольцо слишком узкое для большинства атомов. В таком виде активные атомы или молекулы можно безопасно транспортировать. Попав в место назначения, нанотрубки раскрываются с одного конца (а операции «запаивания» и «распаивания» концов нанотрубок уже вполне под силу современной технологии) и выпускают свое содержимое в строго определенных дозах. Это — не фантастика, эксперименты такого рода уже сейчас проводятся во многих лабораториях мира. И не исключено, что через 10-20 лет на базе этой технологии будет проводиться лечение заболеваний: скажем, больному вводят в кровь заранее приготовленные нанотрубки с очень активными ферментами, эти нанотрубки собираются в определенном месте организма некими микроскопическими механизмами и «вскрываются» в определенный момент времени. Современная технология уже практически готова к реализации такой схемы (рис.7).

Нанотрубки могут выступать не только в роли исследуемого материала, но и как инструмент исследования. На основе нанотрубки можно, к примеру, создать микроскопические весы. Берем нанотрубку, определяем (спектроскопическими методами) частоту ее собственных колебаний, затем прикрепляем к ней исследуемый образец и определяем частоту колебаний нагруженной нанотрубки. Эта частота будет меньше частоты колебаний свободной нанотрубки: ведь масса системы увеличилась, а жесткость осталась прежней (вспомните формулу для частоты колебаний груза на пружинке).

Другой пример, когда нанотрубка является частью физического прибора — это «насаживание» ее на острие сканирующего туннельного или атомного силового микроскопа(рис.8). Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место.

Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков (рис.9)!

Нанотрубки имеют перспективы использования во многих областях современной техники, но их наиболее эффективное применение связано с разработками в различных разделах современной электроники. Так, на их основе собраны транзисторы, нанопровода, самый экономичный логический вентиль, самый плотный массив для создания радиаторов и производства электродов, нанторубки – эффективный термоустойчивый межфазный материал. Cенсацией последнего времени стало создание компьютера на основе углеродных нанотрубок. Похоже, они начинают вытеснять из электроники традиционный кремний.

Исследователи из университета Иллинойса и университета Миннесоты в США представили прототип микроэлектронного логического устройства с рекордно низким уровнем энергопотребления. Использование углеродных нанотрубок в конструкции логического переключателя позволило довести необходимую для работы устройства мощность до нескольких десятых долей нВт. Подробности приведены в статье ученых для журнала Nano Letters.

2.3. Практическая часть

Цель практической части: моделирование одномерной каркасной структуры углеродной нанотрубки.

Выращены углеродные нанотрубки рекордной длины – 18,5 см

Группе китайских ученых, благодаря улучшенной ими технологии химического осаждения из газовой фазы, удалось добиться контролируемого роста сверхдлинных углеродных нанотрубок (со скоростью 40 мкм/с). Полученные нанотрубки обладают рекордной на данный момент длиной — 18,5 сантиметров. Измерения показали, что электрические характеристики таких углеродных нанотрубок не меняются вдоль всей их длины. Этот факт очень важен для возможного применения нанотрубок в производстве различных электронных устройств.

Благодаря своим уникальным физическим свойствам, углеродные нанотрубки (пустотелые «цилиндры» со стенками из атомов углерода) в перспективе могут иметь множество применений в разнообразных технологиях. Например, волокна и тросы из углеродных нанотрубок, согласно теоретическим расчетам, имеют механическую прочность на два порядка больше, чем такие же стальные конструкции. И что немаловажно, обладая такой большой прочностью, они имеют плотность на порядок меньше, чем у той же стали. Что касается замечательных электрических свойств углеродных нанотрубок, то их можно использовать (и кое-где это уже пытаются делать) в электромеханических системах нового типа в качестве нанодиодов, транзисторов, микроэлектрических двигателей и соединительных наноэлектропроводов.

Однако промышленное применение нанотрубок пока что ограничено из-за ряда технологических проблем. Прежде всего, еще не научились дешево и в больших количествах выращивать углеродные нанотрубки. Во-вторых, сейчас не умеют получать сколь угодно длинные нанотрубки, которые при этом имели бы однородные (то есть одинаковые вдоль всей длины) физические свойства — например, без структурных дефектов. Наконец, в процессе роста нанотрубок сложно контролировать такую их характеристику, как хиральность (степень «закрученности» нанотрубки в цилиндр). А это очень важно, поскольку в зависимости от хиральности нанотрубка имеет либо металлическую, либо полупроводниковую проводимость, а значит, для создания различных электронных приборов надо знать тип электропроводности выращенных нанотрубок.

Эти проблемы ученые с переменным успехом пытаются решить модернизацией имеющихся методик и техник роста нанотрубок. И вот недавно группе китайских ученых удалось добиться наибольшего прогресса в получении углеродных нанотрубок с момента открытия их открытия в 1991 году. В своей статье Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates (полный текст — PDF, 220 Кб), опубликованной в журнале Nano Letters, исследователи сообщили о контролируемом синтезе одностенных углеродных нанотрубок с рекордной на данный момент длиной — 18,5 сантиметров; скорость роста при этом составляла более чем 40 мкм/с. До этого максимальной длиной обладала четырехсантиметровая одностенная углеродная нанотрубка, выращенная в 2004 году американскими учеными из Лос-Аламосской национальной лаборатории, а скорость роста составляла 11 мкм/с (см. Zheng et al., 2004. Ultralong single-wall carbon nanotubes // Nature Materials. V. 3. P. 673–676.)

Кроме того, и это тоже важный результат, электрические свойства 18,5-сантиметровых нанотрубок оказались неизменными вдоль всей их длины. Такие достижения стали возможны благодаря используемой учеными технологии CVD (chemical vapor deposition) — химического осаждения из газовой фазы. И хотя технология CVD широко известна в мире как один методов получения углеродных нанотрубок (и не только нанотрубок), китайские исследователи первыми придумали, как ее усовершенствовать и улучшить, чтобы добиться от нее максимальной эффективности. Рецепт получения сверхдлинных одностенных нанотрубок, однородных по своим электрическим свойствам, выглядит так.

Процесс роста происходил при температуре 950°C в атмосфере этанола и водяного пара. В качестве катализаторов роста использовались наночастицы железа и молибдена, которые пропускались через пленку «затравочных» длинных нанотрубок шириной 3 мм (рис. 1). Эта пленка, которую авторы статьи назвали несущей конструкцией для будущего получения сверхдлинных углеродных нанотрубок, находилась на подложке из чистого кремния. Чтобы усилить процесс роста, в течение часа через атмосферу этанола и водяного пара пропускался также водород, скорость потока которого составляла 250 см 3 в минуту.

Роль воды заключалась в стимуляции и контроле каталитической активности, а также в предотвращении появления нежелательного для данного процесса «мусора» в виде аморфного углерода и вертикально ориентированных нанотрубок. Более того, авторы статьи обнаружили, что наиболее эффективно процесс выращивания происходит, когда этанол и вода смешаны между собой в пропорции 4 : 1 (под эффективностью имеется в виду чистота полученных нанотрубок и их длина). Подложка из чистого кремния также играла здесь важную роль. Во-первых, ее задачей было не допустить на начальном этапе роста сверхдлинных нанотрубок появления всё того же углеродного «мусора». Во-вторых, использование кремниевой подложки, по утверждению авторов статьи, помогало получить нанотрубки намного большей конечной длины. Ученые также обнаружили, что без участия несущей конструкции (пленки из длинных нанотрубок) углеродные цилиндры дорастали всего лишь до нескольких сантиметров.

Эти нововведения — несущая конструкция из длинных углеродных нанотрубок на подложке из чистого кремния, а также правильно подобранная пропорция этанола и воды — и позволили получить нанотрубки длиной около 18,5 сантиметров. Еще одним техническим достижением китайских ученых, на котором они акцентируют внимание в своей работе, было то, что им удалось добиться чрезвычайно равномерного распределения температуры в печке, где и происходил весь описанный выше процесс. Без этого выращенные нанотрубки имели бы неоднородные физические свойства.

Чтобы проверить, однородны ли электрические характеристики полученных сверхдлинных нанотрубок, китайские ученые взяли одну из нанотрубок и на ее основе изготовили свыше 100 полевых транзисторов (рис. 2).

Параметры транзисторов оказались полностью тождественными друг другу. Из этого исследователи сделали вывод, что электрические свойства таких углеродных нанотрубок не изменяются по их длине.

К сожалению, в работе китайских ученых не сообщается о том, насколько выращенные ими сверхдлинные нанотрубки структурно однородны и можно ли их использовать для создания очень прочных нитей и тросов? Вопрос чрезвычайно актуален хотя бы для проекта космического лифта — гигантского подъемника грузов на околоземную орбиту, где в качестве троса учеными рассматриваются бездефектные и очень длинные углеродные нанотрубки.

Источник: Xueshen Wang, Qunqing Li, Jing Xie, Zhong Jin, Jinyong Wang, Yan Li, Kaili Jiang, Shoushan Fan. Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates // Nano Letters. 2009. V. 9(9). P. 3137–3141.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: